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“. . . before us lies the boundless ocean of unlimited possibilities.”

—Carnap, The Logical Syntax of Language

The discovery of non-Euclidean geometries (in the 19th century) undermined
the claim that Euclidean geometry is the one true geometry and instead led to
a plurality of geometries no one of which could be said (without qualification)
to be “truer” than the others. In a similar spirit many have claimed that the
discovery of independence results for arithmetic and set theory (in the 20th

century) has undermined the claim that there is one true arithmetic or set
theory and that instead we are left with a plurality of systems no one of which
can be said to be “truer” than the others. In this paper I will investigate
such pluralist conceptions of arithmetic and set theory. I will begin with an
examination of what is perhaps the most sophisticated and developed version
of the pluralist view to date—namely, that of Carnap in The Logical Syntax
of Language—and I will argue that this approach is problematic and that
the pluralism involved is too radical. In the remainder of the paper I will
investigate the question of what it would take to establish a more reasonable
pluralism. This will involve mapping out some mathematical scenarios (using
recent results proved jointly with Hugh Woodin) in which the pluralist could
arguably maintain that pluralism has been secured.

∗I would like to thank Bill Demopoulos, Iris Einheuser, Matti Eklund, Michael Fried-
man, Warren Goldfarb, Daniel Isaacson, Oystein Linnebo, John MacFarlane, Alejandro
Pérez Carballo, and Thomas Ricketts for helpful discussion.
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Here is the plan of the paper. In §1, I give a brief historical overview of
the emergence of pluralism and an accompanying minimalist conception of
philosophy, starting with Descartes and ending with Carnap. In §2, I investi-
gate Carnap’s pluralism and his minimalist conception of philosophy, arguing
that although Carnap’s pluralism is defensible in some domains (for example,
with respect to certain metaphysical and purely notational questions), both
his pluralism in physics and his pluralism in mathematics are untenable. In
the course of the argument we shall see that mathematics is rather resilient
to attempts to prove that it is fleeting. I also argue that Carnap’s minimal-
ist conception of philosophy is too extreme—instead of placing philosophy
before science it places philosophy after science. In contrast, I suggest that
there is room (and historical precedent) for a more meaningful engagement
between philosophy and the exact sciences and, moreover, that it is through
such an engagement that we can properly approach the question of plural-
ism in mathematics. The rest of the paper is devoted to exploring whether
through such an engagement we could be led to a defensible pluralism. In
§3, I lay the groundwork for this new orientation by drawing a structural
parallel between physics and mathematics. Einstein’s work on special rela-
tivity is given as an exemplar of the kind of meaningful engagement I have
in mind. For it is with Einstein that we come to see, for reasons at the
intersection of philosophy and science, that statements once thought to have
absolute significance (such as “A is simultaneous with B”) are ultimately
relativized. Our question then is whether something similar could happen
in arithmetic or set theory, that is, whether for reasons at the intersection
of philosophy and mathematics—reasons sensitive to actual developments in
mathematics—we could come to see that statements once thought to have ab-
solute significance (such as the Continuum Hypothesis (CH)) are ultimately
relativized. In §4, I investigate the region where we currently have reason to
believe that there is no pluralism concerning mathematical statements (this
includes first- and second-order arithmetic). Finally, in §5, I begin by consid-
ering some standard arguments to the effect that our current mathematical
knowledge already secures pluralism in set theory (for example, with regard
to CH). After arguing that this is not the case, I map out a scenario (the
best to my knowledge) in which one could arguably maintain that pluralism
holds (even at the level of third-order arithmetic). This scenario has the
virtue that it is sensitive to future developments in mathematics. In this
way, by presenting such scenarios, we will, with time, be able to test just
how resilient mathematics really is.
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1 The Emergence of Pluralism

To introduce some of our main themes let us begin by reviewing some key
developments in the history of the relation between philosophy and the ex-
act sciences, starting with Descartes (in the 17th century) and ending with
Carnap (in the first half of the 20th century). We shall see that under
the influence of two major scientific revolutions—the Newtonian and the
Einsteinian—the pendulum swung from a robust conception of mathematics
and maximalist conception of philosophy (one in which philosophy is prior
to the exact sciences) to a pluralist conception of mathematics and mini-
malist conception of philosophy (one that places philosophy after the exact
sciences).1

1.1 Descartes

Descartes distinguished between “natural philosophy”—which concerns the
corporal world—and “first philosophy” (or “metaphysics”)—which concerns
the incorporeal world. From the 17th to the 19th century the term “natural
philosophy” was used for what we now call the exact sciences. For Descartes,
first philosophy was prior to natural philosophy in that it was required to lay
the rational foundation for natural philosophy.

This view of the privileged status of first philosophy with respect to nat-
ural philosophy came to be challenged by developments in physics. To begin
with, this approach did not fulfill its promise of a comprehensive and unified
natural philosophy. Indeed, in many cases, it led to results that were at vari-
ance with experience. For example, it led Descartes (in the The Principles
of Philosophy (1644)) to formulate laws of impact that were at odds with ob-
servation. Huygens then found the correct laws through an ingenious blend
of experience and reason (here embodied in the principle of relativity). In
this way natural philosophy gained ground as an independent discipline. The
true vindication of natural philosophy as an independent disciple came with
Newton’s The Mathematical Principles of Natural Philosophy (1687). Indeed
it is here—in natural philosophy and not in first philosophy—that one finds
the first true hope of a comprehensive and adequate account of the corporal
world. Moreover, Newton’s developments created additional trouble for first
philosophy since there were aspects of Newton’s system—such as action at

1In my overview of this historical development I am very much indebted to the work
of Michael Friedman. See especially his Dynamics of Reason.
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a distance and absolute space—that were incompatible with the apparent
results of first philosophy.

1.2 Kant

Kant rejected the pretensions of first philosophy and instead took Newtonian
physics to be an exemplar of theoretical reason. On Kant’s view, the task for
philosophy proper is not to arrive at natural philosophy from some higher,
privileged vantage point,2 but rather to take natural philosophy as given and
then articulate the necessary conditions for its possibility.3 The Kantian so-
lution involves the notion of the constitutive a priori: The basic laws of logic,
arithmetic, Euclidean geometry, and the basic laws of Newtonian physics are
not things we “find in the world”, rather they are things we “bring to the
world”—they are the necessary conditions of our experience of the world (in
particular, they are necessary for the formulation of the Newtonian law of
universal gravitation).4

This view of the central and secure status of both Euclidean geometry
and the basic laws of Newtonian physics came to be challenged (like its pre-
decessor) by developments in mathematics and physics. First, the discovery
of non-Euclidean geometries in the 19th century dethroned Euclidean geome-
try from its privileged position and led to the important distinction between
pure (formal) geometry and applied (physical) geometry. Second, many of
the basic Newtonian laws were overturned by Einstein’s special theory of
relativity. Finally, Einstein’s general theory of relativity provided reason to
believe that the geometry of physical space is actually non-Euclidean.

2In a famous passage in the Critique of Pure Reason (1781/1787), Kant wrote: “With
respect to the question of unanimity among the adherents of metaphysics in their asser-
tions, it is still so far from this that it is rather a battle ground, which seems to be quite
peculiarly destined to exert its forces in mock combats, and in which no combatant has
ever yet been able to win even the smallest amount of ground, and to base on his victory
an enduring possession. There is therefore no doubt that its procedure has, until now,
been a merely random groping, and, what is worst of all, among mere concepts.”

3Thus, in the Prolegomena to Any Future Metaphysics (1783) the first and second parts
of the transcendental problem are “How is pure mathematics possible?” and “How is the
science of nature possible?”.

4There is a subdivision within these a priori truths: Logic is analytic, while arithmetic,
Euclidean geometry and the basic laws of Newtonian physics are synthetic.
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1.3 Reichenbach

Reichenbach accommodated these developments by relativizing the notion
of the constitutive a priori.5 The key observation concerns the fundamental
difference between definitions in pure geometry and definitions in physical
geometry. In pure geometry there are two kinds of definition: first, there are
the familiar explicit definitions; second, there are implicit definitions, that is
the kind of definition whereby such fundamental terms as ‘point’, ‘line’, and
‘surface’ are to derive their meaning from the fundamental axioms governing
them.6 But in physical geometry a new kind of definition emerges—that of
a physical (or coordinative) definition:

The physical definition takes the meaning of the concept for
granted and coordinates to it a physical thing; it is a coordi-
native definition. Physical definitions, therefore, consist in the
coordination of a mathematical definition to a “piece of reality”;
one might call them real definitions. (Reichenbach (1924), p. 8)

As an example, Reichenbach gives the coordination of “beam of light” with
“straight line”.7

Now there are two important points about physical definitions. First,
some such correlation between a piece of mathematics and “a piece of physi-
cal reality” is necessary if one is to articulate the laws of physics (e.g. consider
“force-free moving bodies travel in straight lines”). Second, given a piece of
pure mathematics there is a great deal of freedom in choosing the coordina-
tive definitions linking it to “a piece of physical reality”.8 So we have here
a conception of the a priori which (by the first point) is constitutive (of the
empirical significance of the laws of physics) and (by the second point) is
relative. Moreover, on Reichenbach’s view, in choosing between two empiri-
cally equivalent theories that involve different coordinative definitions, there

5Reichenbach was one of the five students to attend Einstein’s first course on the general
theory of relativity in 1919. His central early works on this subject are Reichenbach (1920)
and Reichenbach (1924).

6Reichenbach (1924, p. 3) refers the reader to Hilbert’s work on the foundations of
geometry for more on the notion of implicit definition.

7Reichenbach stresses that such definitions involve an element of idealization and that
the physical notions concerned (such as “beam of light”) are theory-laden. A coordinative
definition is thus to be distinguished from an operational definition.

8“. . . coordinative definitions are arbitrary, and “truth” and “falsehood” are not ap-
plicable to them.” (Reichenbach (1924), p. 9)
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is no issue of “truth”—there is only the issue of simplicity.9

Now, Reichenbach went beyond this and he held a more radical thesis—in
addition to advocating pluralism with respect to physical geometry (some-
thing made possible by the free element in coordinative definitions), he ad-
vocated pluralism with respect to pure mathematics (such as arithmetic and
set theory). According to Reichenbach, this view is made possible by the
axiomatic conception of Hilbert, wherein axioms are treated as “implicit def-
initions” of the fundamental terms:

The problem of the axioms of mathematics was solved by the
discovery that they are definitions, that is, arbitrary stipulations
which are neither true nor false,10 and that only the logical prop-
erties of a system—its consistency, independence, uniqueness, and
completeness—can be subjects of critical investigation. (Reichen-
bach (1924), p. 3)

On this view there is a plurality of consistent formal systems and the notions
of “truth” and “falsehood” do not apply to these systems; the only issue in
choosing one system over another is one of convenience for the purpose at
hand and this is brought out by investigating their metamathematical prop-
erties, something that falls within the provenance of “critical investigation”,
where there is a question of truth and falsehood.

This radical form of pluralism came to be challenged by Gödel’s discovery
of the incompleteness theorems. To begin with, through the arithmetiza-
tion of syntax, the metamathematical notions that Reichenbach takes to fall
within the provenance of “critical investigation” were themselves seen to be a
part of arithmetic. Thus, one cannot, on pain of inconsistency, say that there
is a question of truth and falsehood with regard to the former but not the
latter. More importantly, the incompleteness theorems buttressed the view
that truth outstrips consistency. This is most clearly seen using Rosser’s

9In his discussion of Einstein’s particular definition of simultaneity, after noting its
simplicity, Reichenbach writes: “This simplicity has nothing to do with the truth of the
theory. The truth of the axioms decides the empirical truth, and every theory compatible
with them which does not add new empirical assumptions is equally true.” (Reichenbach
(1924), p. 11)

10Reichenbach is extending the Hilbertian thesis concerning implicit definitions since
although Hilbert held this thesis with regard to formal geometry he did not hold it with
regard to arithmetic. (I am indebted to Richard Zach for discussion on this point.) Later
I shall argue that this extension is illegitimate.
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strengthening of the first incompleteness theorem as follows: Let T be an
axiom system of arithmetic that (a) falls within the provenance of “critical
investigation” and (b) is sufficiently strong to prove the incompleteness the-
orem.11 Then, assuming that T is consistent (something which falls within
the provenance of “critical investigation”), by Rosser’s strengthening of the
first incompleteness theorem, there is a Π0

1-sentence ϕ such that (provably
within T + Con(T )) both T + ϕ and T + ¬ϕ are consistent. However, not
both systems are equally legitimate. For it is easily seen that if a Π0

1-sentence
ϕ is independent from such a theory, then it must be true.12 So, although
T + ¬ϕ is consistent, it proves a false arithmetical statement.13

1.4 Carnap

Nevertheless, in full awareness of the incompleteness theorems, in The Logical
Syntax of Language (1934), Carnap held a view that, on the face of it at
least, appears to be quite similar to Reichenbach’s view, both with regard
to the thesis concerning the conventional element in physical geometry and
the thesis concerning the purely conventional nature of pure mathematics.
However, Carnap’s position is much more subtle and sophisticated. Indeed I
think that it is the most fully developed account of a pluralist conception of
mathematics that we have and, for this reason, I will examine it in detail in
the next section.

What I want to point out here is that Carnap also articulated an ac-
companying minimalist conception of philosophy, one according to which
“[p]hilosophy is to be replaced by the logic of science—that is to say, by the
logical analysis of the concepts and sentences of the sciences, for the logic of
science is nothing other than the logical syntax of the language of science.”
(Carnap (1934), p. xiii) Thus the pendulum has gone full swing: We started
with a robust conception of mathematics and maximalist conception of phi-
losophy (where philosophy comes before the exact sciences) and through the

11A natural choice for such an axiom system is Primitive Recursive Arithmetic (PRA)
but much weaker systems suffice, for example, I∆0 + exp. Either of these systems can be
taken as T in the argument that follows.

12The point being that T is Σ0
1-complete (provably so in T ).

13For the reader concerned that this argument involves the notion of truth in a prob-
lematic way, notice (as we have indicated in the parenthetical remarks) that it can be
implemented in T + Con(T ) (which is taken to fall within the provenance of “critical in-
vestigation”); that is, T + Con(T ) proves that T +ϕ and T +¬ϕ are consistent and it also
proves ϕ.
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influence of two scientific revolutions we were led to a pluralist conception
of mathematics and minimalist conception of philosophy (where philosophy
comes after the exact sciences).14

In the next section I will criticize both Carnap’s pluralist conception
of mathematics and his minimalist conception of philosophy and suggest
that it is through a more meaningful engagement between philosophy and
mathematics that we can properly address the question of pluralism.

2 Carnap on the Foundations of Logic and

Mathematics

In The Logical Syntax of Language (1934)15 Carnap defends the following
three distinctive philosophical theses: (1) The thesis that logic and mathe-
matics are analytic and hence without content16 and purely formal.17 (2) A
radical pluralist conception of pure mathematics (embodied in his Principle
of Tolerance) according to which the meaning of the fundamental terms is
determined by the postulates governing them and hence any consistent set of
postulates is equally legitimate.18 (3) A minimalist conception of philosophy
in which most traditional questions are rejected as pseudo-questions and the
task of philosophy is identified with the study of the logical syntax of the

14The above historical sketch has been necessarily brief and so some qualifications and
comments are in order. First, there are other views that reject first philosophy and largely
place philosophy after science, for example, various forms of naturalism. Second, the above
division—philosophy-before-science versus philosophy-after-science—is not intended as a
complete classification of views—there are degrees. (In fact, even in the extreme case where
a view attempts to place philosophy entirely after science, if it does so for philosophical
reasons, then it would seem to involve first philosophy at the meta-level. To overcome such
an impurity, the advocate of such a view might regard the meta-philosophical view not as
a philosophical thesis but rather as a proposal. Below we shall see this as an attractive
interpretation of Carnap.) Finally, it is worth mentioning that Carnap did not have an
uncritical attitude toward science and he did a good deal of work that one might say lies
at the intersection of philosophy and science (take, for example, his work on probability
and entropy).

15For definiteness I shall focus almost exclusively on the position held by Carnap in this
work. Unless otherwise specified all references in this section are to this work.

16See pp. xiv, 7, 41.
17See pp. 1–2, 258.
18See p. xv.
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language of science.19

I will deal with these three philosophical theses in order in the following
three subsections.20

2.1 Logic, Mathematics, and Content

The first philosophical thesis—that logical and mathematical truths are an-
alytic and hence without content—involves Carnap’s distinctive account of
the notions of analyticity and content. So it is here that we shall begin.
But first we need to make a few terminological remarks since some Carnap’s
terminology differs from modern terminology and, where there is overlap, his
usage—most notably the term ‘syntax’—is often out of step with modern
usage.

2.1.1 Some Key Terminology

A central distinction for Carnap is that between definite and indefinite no-
tions. A definite notion is one that is recursive, such as “is a formula” and
“is a proof of ϕ”. An indefinite notion is one that is non-recursive, such
as “is an ω-consequence of PA” and “is true in Vω+ω”. This leads to a dis-
tinction between (i) the method of derivation (or d-method), which investi-
gates the semi-definite (recursively enumerable) metamathematical notions,
such as demonstrable, derivable, refutable, resoluble, and irresoluble, and (ii)
the method of consequence (or c-method), which investigates the (typically)
non-recursively enumerable metamathematical notions such as consequence,
analytic, contradictory, determinate, and synthetic.

A language for Carnap is what we would today call a formal axiom sys-
tem.21 The rules of the formal system are definite (recursive)22 and Carnap

19See p. 279.
20This section is a summary of the fuller discussion in Koellner (2009), to which the

reader is referred for further details and a discussion of Carnap’s views during later periods.
In my thinking about The Logical Syntax of Language I have benefited from Friedman
(1999c), Gödel (1953/9), and Goldfarb & Ricketts (1992). After writing Koellner (2009),
Warren Goldfarb drew my attention to Kleene’s review (Kleene (1939)). I am in complete
agreement with what Kleene has to say and there is some overlap between our discussions,
though my discussion goes a good deal further.

21See p. 167.
22Strictly speaking Carnap does not prohibit indefinite rules (see p. 172) but in all of

the cases he considers (Language I, Language II, etc.) the rules are definite.
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is fully aware that a given language cannot include its own c-notions (see
Theorem 60c.1).

The logical syntax of a language is what we would today call metatheory.
It is here that one formalizes the c-notions for the (object) language. From
among the various c-notions Carnap singles out one as central, namely, the
notion of (direct) consequence; from this c-notion all of the other c-notions
can be defined in routine fashion.23

2.1.2 The Analytic/Synthetic Distinction

We now turn to Carnap’s account of his fundamental notions, most notably,
the analytic/synthetic distinction and the division of primitive terms into
‘logico-mathematical’ and ‘descriptive’. Carnap actually has two approaches.
The first approach occurs in his discussion of specific languages—Languages
I and II. Here he starts with a division of primitive terms into ‘logico-
mathematical’ and ‘descriptive’ and upon this basis defines the c-notions, in
particular the notions of being analytic and synthetic. The second approach
occurs in the discussion of general syntax. Here Carnap reverses procedure:
he starts with a specific c-notion—namely, the notion of direct consequence—
and he uses it to define the other c-notions and draw the division of primitive
terms into ‘logico-mathematical’ and ‘descriptive’.

A. The First Approach. In the first approach Carnap introduces two
languages—Language I and Language II. It is important to note (as we
have above) that here by ‘language’ Carnap means what we would call a
‘formal system’.24 The background languages (in the modern sense) of Lan-
guage I and Language II are quite general—they include expressions that we
would call ‘descriptive’. Carnap starts with a demarcation of primitive terms
into ‘logico-mathematical’ and ‘descriptive’. The expressions he classifies as
‘logico-mathematical’ are exactly those included in the modern versions of
these systems; the remaining expressions are classified as ‘descriptive’. Lan-
guage I is a version of PRA and Language II is a version of finite type theory
built over PA. The d-notions for these languages are the standard proof-
theoretic ones. So let us concentrate on the c-notions.

23See p. 168.
24Although Carnap’s usage of ‘language’ is somewhat misleading I will follow him in

certain instances—for example, in speaking of ‘Language I’—simply because the usage is
well-entrenched in his writing and the secondary literature. It will always be clear from
context whether I am referring to a system or a language (in the modern sense).
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For Language I Carnap starts with a consequence relation based on two
rules—(i) the rule that allows one to infer ϕ if T ` ϕ (where T is some
fixed Σ0

1-complete formal system) and (ii) the ω-rule. It is then easily seen
that one has a complete theory for the logico-mathematical fragment, that
is, for any logico-mathematical sentence ϕ, either ϕ or ¬ϕ is a consequence
of the null set. The other c-notions are then defined in the standard fashion.
For example, a sentence is analytic if it is a consequence of the null set;
contradictory if its negation is analytic; etc.

For Language II Carnap starts by defining analyticity. His definition
is a notational variant of the Tarskian truth definition with one impor-
tant difference—namely, it involves an asymmetric treatment of the logico-
mathematical and descriptive expressions. For the logico-mathematical ex-
pressions his definition really just is a notational variant of the Tarskian
truth definition. But descriptive expressions must pass a more stringent test
to count as analytic—they must be such that if one replaces all descriptive
expressions in them by variables of the appropriate type, then the resulting
logico-mathematical expression is analytic, that is, true.25 In other words, to
count as analytic a descriptive expression must be a substitution-instance of
a general logico-mathematical truth. With this definition in place the other
c-notions are defined in the standard fashion.

The content of a sentence is defined to be the set of its non-analytic
consequences. It then follows immediately from the definitions that logico-
mathematical sentences (of both Language I and Language II) are analytic or
contradictory and (assuming consistency) that analytic sentences are without
content.

B. The Second Approach. In the second approach, for a given language,
Carnap starts with an arbitrary notion of direct consequence26 and from
this notion he defines the other c-notions in the standard fashion. More im-
portantly, in addition to defining the other c-notion, Carnap also uses the
primitive notion of direct consequence (along with the derived c-notions) to
effect the classification of terms into ‘logico-mathematical’ and ‘descriptive’.
The guiding idea is that “the formally expressible distinguishing peculiarity
of logical symbols and expressions [consists] in the fact that each sentence
constructed solely from them is determinate” (177).27 He then gives a formal

25The relevant clause is DA I.C.b. on p. 111.
26There are no conditions placed on this notion—for example, it could be a definite

notion (such as “provable in T”).
27A sentence is determinate if either it or its negation is valid, that is, a consequence of
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definition that aims to capture this idea. His actual definition is problem-
atic for various technical reasons28 and so we shall leave it aside. What is
important for our purposes (as shall become apparent in §2.1.3) is the fact
that (however the guiding idea is implemented) the actual division between
‘logico-mathematical’ and ‘descriptive’ expressions that one obtains as out-
put is sensitive to the scope of the direct consequence relation with which
one starts.

With this basic division in place, Carnap can now draw various deriva-
tive divisions, most notably, the division between analytic and synthetic
statements: Suppose ϕ is a consequence of Γ. Then ϕ is said to be
an L-consequence of Γ if either (i) ϕ and the sentences in Γ are logico-
mathematical, or (ii) letting ϕ′ and Γ′ be the result of unpacking all descrip-
tive symbols, then for every result ϕ′′ and Γ′′ of replacing every (primitive)
descriptive symbol by an expression of the same genus (a notion that is de-
fined on p. 170), maintaining equal expressions for equal symbols, we have
that ϕ′′ is a consequence of Γ′′. Otherwise ϕ is a P-consequence of Γ. This
division of the notion of consequence into L-consequence and P-consequence
induces a division of the notion of demonstrable into L-demonstrable and P-
demonstrable and the notion of valid into L-valid and P-valid and likewise for
all of the other d-notions and c-notions. The terms ‘analytic’, ‘contradictory ’,
and ‘synthetic’ are used for ‘L-valid’, ‘L-contravalid’, and ‘L-indeterminate’.

Again it follows immediately from the definitions that logico-
mathematical sentences are analytic or contradictory and that analytic sen-
tences are without content. This is what Carnap says in defense of the first
of his three basic theses.

2.1.3 Criticism #1: The Argument from Free Parameters

The trouble with the first approach is that the definitions of analyticity that
Carnap gives for Languages I and II are highly sensitive to the original classifi-
cation of terms into ‘logico-mathematical’ and ‘descriptive’. And the trouble
with the second approach is that the division between ‘logico-mathematical’
and ‘descriptive’ expressions (and hence division between ‘analytic’ and ‘syn-
thetic’ truths) is sensitive to the scope of the direct consequence relation with

the null set.
28For some of these see Quine (1963), though note that Quine’s discussion appears at

points to mistakenly assume that the notion of direct consequence that Carnap uses is a
d-notion.
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which one starts. This threatens to undermine Carnap’s thesis that logico-
mathematical truths are analytic and hence without content. Let us discuss
this in more detail.

In the first approach, the original division of terms into ‘logico-
mathematical’ and ‘descriptive’ is made by stipulation and if one alters this
division one thereby alters the derivative division between analytic and syn-
thetic sentences. For example, consider the case of Language II. If one calls
only the primitive terms of first-order logic ‘logico-mathematical’ and then
extends the language by adding the machinery of arithmetic and set theory,
then, upon running the definition of ‘analytic’, one will have the result that
true statements of first-order logic are without content while (the distinctive)
statements of arithmetic and set theory have content.29 For another exam-
ple, if one takes the language of arithmetic, calls the primitive terms ‘logico-
mathematical’ and then extends the language by adding the machinery of
finite type theory, calling the basic terms ‘descriptive’, then, upon running
the definition of ‘analytic’, the result will be that statements of first-order
arithmetic are analytic or contradictory while (the distinctive) statements of
second- and higher-order arithmetic are synthetic and hence have content.
In general, by altering the input, one alters the output, and Carnap adjusts
the input to achieve his desired output.30

In the second approach, there are no constraints on the scope of the
direct consequence relation with which one starts and if one alters it one
thereby alters the derivative division between ‘logico-mathematical’ and ‘de-
scriptive’ expressions. Recall that the guiding idea is that logical symbols
and expressions have the feature that sentences composed solely of them are
determinate. The trouble is that (however one implements this idea) the
resulting division of terms into ‘logico-mathematical’ and ‘descriptive’ will
be highly sensitive to the scope of the direct consequence relation with which
one starts.31 For example, let S be first-order PA and for the direct con-
sequence relation take “provable in PA”. Under this assignment Fermat’s
Last Theorem will be deemed descriptive, synthetic, and to have non-trivial

29This is more in keeping with the standard use of the term ‘content’. For, in a straight-
forward sense, the truths of first-order logic do not pertain to a special subject matter
(they are perfectly general) while those of arithmetic and set theory do.

30For a fuller discussion—one that involves a discussion of two additional parameters—
see Koellner (2009).

31Carnap was fully aware of this sensitivity. See, for instance, the example involving
gµν that Carnap gives (on p. 178) right after he draws the division.
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content.32 For an example at the other extreme, let S be an extension of
PA that contains a physical theory and let the notion of direct consequence
be given by a Tarskian truth definition for the language. Since in the met-
alanguage one can prove that every sentence is true or false, every sentence
will be either analytic (and so have null content) or contradictory (and so
have total content). To overcome such counter-examples and get the classifi-
cation that Carnap desires one must ensure that the consequence relation is
(i) complete for the sublanguage consisting of expressions that one wants to
come out as ‘logico-mathematical’ and (ii) not complete for the sublanguage
consisting of expressions that one wants to come out as ‘descriptive’. Once
again, by altering the input, one alters the output, and Carnap adjusts the
input to achieve his desired output.

To summarize: What we have (in either approach) is not a principled
distinction. Instead, Carnap has merely provided us with a flexible piece of
technical machinery involving free parameters that can be adjusted to yield
a variety of outcomes concerning the classifications of analytic/synthetic,
contentful/non-contentful, and logico-mathematical/descriptive. In his own
case, he has adjusted the parameters in such a way that the output is a formal
articulation of his logicist view of mathematics that the truths of mathemat-
ics are analytic and without content. And one can adjust them differently
to articulate a number of other views, for example, the view that the truths
of first-order logic are without content while the truths of arithmetic and set
theory have content. The possibilities are endless. The point, however, is
that we have been given no reason for fixing the parameters one way rather
than another. The distinctions are thus not principled distinctions. It is
trivial to prove that mathematics is trivial if one trivializes the claim.

2.1.4 Criticism #2: The Argument from Assessment Sensitivity

Carnap is perfectly aware that to define c-notions like analyticity one must
ascend to a stronger metalanguage. However, there is a distinction that he
appears to overlook,33 namely, the distinction between (i) having a stronger

32Carnap is fully aware of such counter-examples. See p. 231 of §62 where he notes that
his definitions have the consequence that the universal numerical quantifier in Whitehead
and Russell’s Principia Mathematica is really a descriptive symbol, the reason being that
the system involves only d-rules and hence (by Gödel’s incompleteness theorem) it will
leave some Π0

1-sentences undecided.
33See, for example, pp. 1–2.
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system S ′ that can define ‘analytic in S’ and (ii) having a stronger system S ′

that can, in addition, evaluate a given statement of the form ‘ϕ is analytic
in S’. It is an elementary fact that two systems S1 and S2 can employ the
same definition (from an intensional point of view) of ‘analytic in S’ (using
either the definition given for Language I or Language II) but differ on their
evaluation of ‘ϕ is analytic in S’ (that is, differ on the extension of “analytic
in S”). Thus, to determine whether ‘ϕ is analytic in S’ holds one needs to
access much more than the “syntactic design” of ϕ—in addition to ascending
to an essentially richer metalanguage one must move to a sufficiently strong
system to evaluate ‘ϕ is analytic in S’. The first step need not be a big one.34

But for certain ϕ the second step must be huge.35

In fact, it is easy to see that to answer “Is ϕ analytic in Language I?”
is just to answer ϕ and, in the more general setting, to answer all questions
of the form “Is ϕ analytic in S?” (for various mathematical ϕ and S),
where here “analytic” is defined as Carnap defines it for Language II, just
is to answer all questions of mathematics.36 The same, of course, applies
to the c-notion of consequence. So, when in first stating the Principle of
Tolerance, Carnap tells us that we can choose our system S arbitrarily and
that “no question of justification arises at all, but only the question of the
syntactical consequences to which one or other of the choices leads” (p. xv, my
emphasis)—where here, as elsewhere, he means the c-notion of consequence—
he has given us no assurance, no reduction at all.

2.2 Radical Pluralism

This brings us to the second philosophical thesis—the thesis of pluralism in
mathematics. Let us first note that Carnap’s pluralism is quite radical. We
are told that “any postulates and any rules of inference [may] be chosen arbi-

34For example, taking S to be PA one can simply extend the language by adding a truth
predicate and extend the axioms by adding the Tarskian truth axioms and allow the truth
predicate to figure in the induction scheme. The resulting system S′ is only minimally
stronger than S. It proves Con(PA) but not much more.

35To continue the example in the previous footnote, suppose one wishes to show that
Con(ZF + AD) is analytic in S (which, as I shall argue below, it is). To do this one must
move to a system that has consistency strength beyond that of “ZFC + there are ω-many
Woodin cardinals”.

36For the first note that T `ω ϕ if and only if ϕ (where T is the fixed Σ0
1-complete

theory) and for the second note that the Tarskian truth definition has the feature that
T (pϕq) if and only if ϕ (where T is the truth predicate).
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trarily” (xv); for example, the question of whether the Principle of Selection
(that is, the Axiom of Choice (AC)) should be admitted is “purely one of
expedience” (142); more generally,

The [logico-mathematical sentences] are, from the point of view of
material interpretation, expedients for the purpose of operating
with the [descriptive sentences]. Thus, in laying down [a logico-
mathematical sentence] as a primitive sentence, only usefulness
for this purpose is to be taken into consideration. (142)

So the pluralism is quite broad—it extends to AC and even to Π0
1-sentences.37

Now, as I argued in §1.3 on Reichenbach, there are problems in maintain-
ing Π0

1-pluralism. One cannot, on pain of inconsistency, think that statements
about consistency are not “mere matters of expedience” without thinking
that Π0

1-statements generally are not mere “matters of expedience”. But I
want to go further than make such a negative claim. I want to uphold the
default view that the question of whether a given Π0

1-sentence holds is not a
mere matter of expedience; rather, such questions fall within the provenance
of theoretical reason.38 In addition to being the default view, there are solid
reasons behind it. One reason is that in adopting a Π0

1-sentence one could

37For further evidence that Carnap’s pluralism is this radical, see xv, 124 and Carnap
(1939), p. 27.

38Some readers might be tempted to interpret me as saying that there is a “fact of the
matter” concerning Π0

1-sentences. I want to resist such a formulation since I am not sure
that I understand the phrase “fact of the matter” as it is often employed. I certainly
understand this phrase when it is used merely as a point of contrast with “matter of mere
expedience”. On this reading, it means no more than that the issue is one of theoretical
reason, one concerning something more than mere utility, one having something to do
with the truth of one theory over another (not in some robust metaphysical sense of the
‘truth’ but in the ordinary sense). This distinction is not as sharp as one would like but
one can point to clear cases (as we have seen above and as we shall see below) and the
distinction strikes me as significant. In contrast, the phrase “fact of the matter” is often
used in a way that strives for something more—“thick truth”, “Truth with a capital ‘T’ ”,
the idea of “carving reality at the joints”, etc. I cannot think of examples where I could
go along with such talk with any confidence. Moreover, it seems to me that such talk buys
into the myth that there is some Archimedean vantage point from which we can survey
the array of theories and compare them with “reality as it is in and of itself”—in short,
a “sideways-on view” (in McDowell’s apt phrase). This is something that I think Kant
and Carnap were right to reject and, once we follow them in doing so, we are left with the
former, thinner distinction—the one I employ in the text. (See Tait (1986) for a critical
discussion of the “myth of the model in the sky”. The reader might press me with the
concern that the thinner distinction that I invoke (following Carnap) rests on a similar
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always be struck by a counter-example.39 Other reasons have to do with the
clarity of our conception of the natural numbers and with our experience to
date with that structure. On this basis, I would go further and maintain that
for no sentence of first-order arithmetic is the question of whether it holds
a mere matter of experience. Certainly this is the default view from which
one must be moved.

What does Carnap have to say that will sway us from the default view,
and lead us to embrace his radical form of pluralism? In approaching this
question it is important to bear in mind that there are two general interpre-
tations of Carnap. According to the first interpretation—the substantive—
Carnap is really trying to argue for the pluralist conception. According to the
second interpretation—the non-substantive—he is merely trying to persuade
us of it, that is, to show that of all the options it is most “expedient”.40

The most obvious approach to securing pluralism is to appeal to the
work on analyticity and content. For if mathematical truths are without
content and, moreover, this claim can be maintained with respect to an
arbitrary mathematical system, then one could argue that even apparently
incompatible systems have null content and hence are really compatible (since
there is no contentual-conflict).

Now, in order for this to secure radical pluralism, Carnap would have to
first secure his claim that mathematical truths are without content. But, as
we have argued above, he has not done so. Instead, he has merely provided
us with a piece of technical machinery that can be used to articulate any one
of a number of views concerning mathematical content and he has adjusted
the parameters so as to articulate his particular view. So he has not secured
the thesis of radical pluralism.41 Thus, on the substantive interpretation,
Carnap has failed to achieve his end.

This leaves us with the non-substantive interpretation. There are a num-
ber of problems that arise for this version of Carnap. To begin with, Carnap’s
technical machinery is not even suitable for articulating his thesis of radical

myth. I do not think that it does. But it would take us too far afield to explore the issue
here.)

39This is something that Carnap recognizes.
40See Friedman (1999c) for the substantive interpretation and see Goldfarb & Ricketts

(1992) for the non-substantive interpretation. In what follows I do not take a stance on
the interpretative issue. Instead I criticize both versions of Carnap.

41There are two other approaches that one might consider. These approaches fail as
well. See Koellner (2009).
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pluralism since (using either the definition of analyticity for Language I or
Language II) there is no metalanguage in which one can say that two appar-
ently incompatible systems S1 and S2 both have null content and hence are
really contentually compatible. To fix ideas, consider a paradigm case of an
apparent conflict that we should like to dissolve by saying that there is no
contentual-conflict: Let S1 = PA + ϕ and S2 = PA + ¬ϕ, where ϕ is any
arithmetical sentence, and let the metatheory be MA = ZFC. The trouble
is that on the approach to Language I, although in MT we can prove that
each system is ω-complete (which is a start since we wish to say that each
system has null content), we can also prove that one has null content while
the other has total content (that is, in ω-logic, every sentence of arithmetic
is a consequence). So, we cannot, within MT articulate the idea that there
is no contentual-conflict.42 The approach to Language II involves a com-
plementary problem. To see this note that while a strong logic like ω-logic
is something that one can apply to a formal system, a truth definition is
something that applies to a language (in our modern sense). Thus, on this
approach, in MT the definition of analyticity given for S1 and S2 is the same
(since the two systems are couched in the same language). So, although in
MT we can say that S1 and S2 do not have a contentual-conflict this is only
because we have given a deviant definition of analyticity, one that is blind to
the fact that in a very straightforward sense ϕ is analytic in S1 while ¬ϕ is
analytic in S2.

Now, although Carnap’s machinery is not adequate to articulate the thesis
of radical pluralism (for a given collection of systems) in a given metathe-
ory, under certain circumstances he can attempt to articulate the thesis by
changing the metatheory. For example, let S1 = PA + Con(ZF + AD) and
S2 = PA +¬Con(ZF + AD) and suppose we wish to articulate both the idea
that the two systems have null content and the idea that Con(ZF + AD)
is analytic in S1 while ¬Con(ZF + AD) is analytic in S2. As we have seen
no single metatheory (on either of Carnap’s approaches) can do this. But
it turns out that because of the kind of assessment sensitivity that we dis-
cussed in §2.1.4, there are two metatheories MT1 and MT2 such that in MT1

we can say both that S1 has null content and that Con(ZF + AD) is ana-
lytic in S1, while in MT2 we can say both that S2 has null content and that
¬Con(ZF + AD) is analytic in S2. But, of course, this is simply because
(any such metatheory) MT1 proves Con(ZF + AD) and (any such metathe-

42This is related to a point made by Michael Friedman. See p. 226 of Friedman (1999c).
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ory) MT2 proves ¬Con(ZF + AD). So we have done no more than (as we
must) reflect the difference between the systems in the metatheories. Thus,
although Carnap does not have a way of articulating his radical pluralism (in
a given metalanguage), he certainly has a way of manifesting it (by making
corresponding changes in his metatheories).

As a final retreat Carnap might say that he is not trying to persuade us of
a thesis that (concerning a collection of systems) can be articulated in a given
framework but rather is trying to persuade us to adopt a thorough radical
pluralism as a “way of life”. He has certainly shown us how we can make the
requisite adjustments in our metatheory so as to consistently manifest radical
pluralism. But does this amount to more than an algorithm for begging the
question?43 Has Carnap shown us that there is no question to beg? I do not
think that he has said anything persuasive in favour of embracing a thorough
radical pluralism as the “most expedient” of the options. The trouble with
Carnap’s entire approach (as I see it) is that the question of pluralism has
been detached from actual developments in mathematics. To be swayed from
the default position something of greater substance is required.

2.3 Philosophy as Logical Syntax

This brings us finally to Carnap’s third philosophical thesis—the thesis that
philosophy is the logical syntax of the language of science. This thesis em-
bodies a pluralism more wide-ranging than mathematical pluralism. For just
as foundational disputes in mathematics are to be dissolved by replacing the
theoretical question of the justification of a system with the practical ques-
tion of the expedience of adopting the system, so too many philosophical and
physical disputes are to be dissolved in a similar fashion:

It is especially to be noted that the statement of a philosophical
thesis sometimes . . . represents not an assertion but a suggestion.
Any dispute about the truth or falsehood of such a thesis is quite
mistaken, a mere battle of words; we can at most discuss the
utility of the proposal, or investigate its consequences. (299–300)

Once this shift is made one sees that

43There are many places where Carnap quite obviously begs the question in the metathe-
ory. See, for example, §§43 and 44 where Carnap discusses intuitionism and predicativism;
to people like Brouwer and Poincaré these sections would be maddening.
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the question of truth or falsehood cannot be discussed, but only
the question whether this or that form of language is the more
appropriate for certain purposes. (300)

Philosophy has a role to play in this. For, on Carnap’s conception, “as soon
as claims to scientific qualifications are made” (280), philosophy just is the
study of the syntactical consequences of various scientific systems.

I want to focus on this distinction between “the question of truth or
falsehood” and “the question of whether this or that form of language is the
more appropriate for certain purposes” as Carnap employs it in his discussion
of metaphysics, physics, and mathematics.

Let us start with metaphysics. The first example that Carnap gives (in a
long list of examples) concerns the apparent conflict between the statements
“Numbers are classes of classes of things” and “Numbers belong to a special
primitive kind of objects”. On Carnap’s view, these material formulations
are really disguised versions of the proper formal or syntactic formulations
“Numerical expressions are class-expressions of the second-level” and “Nu-
merical expressions are expressions of the zero-level” (300). And when one
makes this shift (from the “material mode” to the “formal mode”) one sees
that “the question of truth or falsehood cannot be discussed, but only the
question whether this or that form of language is the more appropriate for
certain purposes” (300). There is a sense in which this is hard to disagree
with. Take, for example, the systems PA and ZFC− Infinity. These systems
are mutually interpretable (in the logician’s sense). It seems that there is
no theoretical question of choosing one over the other—as though one but
not the other were “getting things right”, “carving mathematical reality at
the joints”—but only a practical question of expedience relative to a given
task. Likewise with apparent conflicts between systems that construct lines
from points versus points from lines or use sets versus well-founded trees,
etc. So, I am inclined to agree with Carnap on such metaphysical disputes.
I would also agree concerning theories that are mere notational variants of
one another (such as, for example, the conflict between a system in a typed
language and the mutually interpretable system obtained by “flattening” (or
“amalgamating domains”)). But I think that Carnap goes too far in his
discussion of physics and mathematics. I have already discussed the case of
mathematics (and I will have much more to say about it below). Let us turn
to the case of physics.
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Carnap’s conventionalism extends quite far into physics. Concerning
physical hypotheses he writes:

The construction of the physical system is not affected in ac-
cordance with fixed rules, but by means of conventions. These
conventions, namely, the rules of formation, the L-rules and the
P-rules (hypothesis), are, however, not arbitrary. The choice of
them is influenced, in the first place, by certain practical method-
ological considerations (for instance, whether they make for sim-
plicity, expedience, and fruitfulness in certain tasks). . . . But in
addition the hypotheses can and must be tested by experience,
that is to say, by the protocol-sentences—both those that are al-
ready stated and the new ones that are constantly being added.
Every hypothesis must be compatible with the total system of hy-
potheses to which the already recognized protocol-sentences also
belong. That hypotheses, in spite of their subordination to em-
pirical control by means of the protocol-sentences, nevertheless
contain a conventional element is due to the fact that the sys-
tem of hypotheses is never univocally determined by empirical
material, however rich it may be. (320)

Thus, while in pure mathematics it is convention and question of expedience
all the way (modulo consistency), in physics it is convention and question of
expedience modulo empirical data.

I think that this conception of theoretical reason in physics is too narrow.
Consider the following two examples: first, the historical situation of the con-
flict between the Ptolemaic and the Copernican accounts of the motion of
the planets and, second, the conflict between the Lorentz’s mature theory of
1905 (with Newtonian spacetime) and Einstein’s special theory of relativity
(with Minkowski spacetime). In the first case, the theories are empirically
equivalent to within 3′ of arc and this discrepancy was beyond the powers
of observation at the time. In the second case, there is outright empirical
equivalence.44 Yet I think that the reasons given at the time in favour of the
Copernican theory were not of the practical variety; they were not considera-
tions of expedience, they were solid theoretical reasons pertaining to truth.45

44See Janssen (2002) for a discussion of the empirical equivalence of Lorentz’s mature
theory of 1905 and special relativity.

45See Evans (1998), p. 412 and Wilson (1970), p. 109 for six solid reasons.
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Likewise with the reasons for Einstein’s theory over Lorentz’s (empirically
equivalent) mature theory of 1905.46

2.3.1 Conclusion

Let us summarize the above conclusions. Carnap has not given a substantive
account of analyticity and so he has not given a defense of his first thesis—the
thesis that mathematical truths are analytic and hence formal and without
content. Instead he has presented some technical machinery that can be used
to formally articulate his view. In the case of his second thesis—that radical
pluralism holds in mathematics—the situation is even worse. Not only has
he not provided a defense of this thesis, he has not even provided technical
machinery that is suitable to articulate the thesis (for a given collection of
systems) in a given metatheory. All he can do is manifest his radical plural-
ism by mirroring the differences among the candidate systems as differences
among their metatheories.

These limitations lead one to think that perhaps Carnap’s first two the-
ses were not intended as assertions—theses to be argued for—but rather as
suggestions—theses to be adopted for practical reasons as the most expedient
of the available options. The trouble is that he has not provided a persuasive
case that these theses are indeed the most expedient. In any case, one can-
not refute a proposal. One can only explain one’s reasons for not following
it—for thinking that it is not most expedient.

There is something right in Carnap’s motivation. His motivation comes
largely from his rejection of the myth of the model in the sky. One prob-
lem with this myth is that it involves an alienation of truth (to borrow an
apt phrase of Tait).47 However, the non-pluralist can agree in rejecting such
a myth. Once we reject the myth and the pretensions of first philosophy,
we are left with the distinction between substantive theoretical questions
and matters of mere expedience. I agree with Carnap in thinking that the
choice between certain metaphysical frameworks (e.g. whether we construct

46See DiSalle (2006), Friedman (1999a) and Janssen (2002). To be sure, the full vindica-
tion of the Copernican theory over the Ptolemaic theory (and Tychonic theory) came with
Galileo (and Newton) and the full vindication of special relativity over Lorentz’s mature
theory came with general relativity. For my purposes it is sufficient that the reasons given
before the discovery of the telescope (and Newtonian gravitation theory), in the first case,
and the discovery of general relativity, in the second case, have some force.

47See §72.

22



lines from points or points from lines) and between certain notational vari-
ants (e.g. whether we use a typed language or amalgamate types) are not
substantive theoretical choices but rather matters of mere expedience. But
I think that he goes too far in saying that the choice between empirically
equivalent theories in physics and the choice between arbitrary consistent
mathematical systems in mathematics are likewise matters of mere expedi-
ence. In many such cases one can provide convincing theoretical reasons for
the adoption of one system over another. To deny the significance of such
reasons appears to me to reveal a remnant of the kind of first philosophy
that Carnap rightfully rejected.

Just as Kant was right to take Newtonian physics as exemplary of theoret-
ical reason and retreat from a maximalist conception of philosophy—one that
placed philosophy before science—I think that we should take Einsteinian
physics as exemplary of theoretical reason and retreat from a minimalist con-
ception of philosophy—one that places philosophy after science. Similarly, in
the case of mathematics, I think we are right to take the developments in the
search for new axioms seriously. But we must ensure that the pendulum does
not return to its starting point. The proper balance, I think, lies in between,
with a more meaningful engagement between philosophy and science. In the
remainder of this paper I shall outline such an approach. I believe that what
I shall have to say is Carnapian in spirit, if not in letter.

3 A New Orientation

I have embraced Carnap’s pluralism with respect to certain purely metaphys-
ical and notational questions but rejected it with regard to certain statements
in physics and mathematics. For example, I agree with Carnap that there is
no substantive issue involved in the choice between ZFC and a variant of this
theory that uses the ontology of well-founded trees instead of sets. But I dis-
agree in thinking the same with regard to the choice between ZFC+Con(ZFC)
and ZFC+¬Con(ZFC). Here there is a substantive difference. In slogan form
my view might be put like this: Existence in mathematics is (relatively)
cheap; truth is not.48

48The subject requires further discussion than I can give it here. For example, how
cheap is existence in mathematics? Does consistency suffice? Consider ZFC + CH versus
ZFC + ¬CH. There is reason to believe that both are consistent. The trouble is that CH
and ¬CH are existential claims and, on a straightforward reading, the objects that they

23



In the physical case I gave two examples of where I think we must part
ways with Carnap. First, the historical situation of the choice between the
Ptolemaic and Copernican account of the planets; second, the choice between
Lorentz’s mature theory (with Newtonian spacetime) and Einstein’s theory
of special relativity (with Minkowski spacetime). In opposition to Carnap, I
hold that in each case the choice is not one of “mere expedience”, but rather
falls within the provenance of theoretical reason—indeed I take these to be
some of the highest achievements of theoretical reason.

In addition to breaking with Carnap on the above (and other) par-
ticular claims, I think we should break with his minimalist conception
of philosophy—a conception that places philosophy after science—and—
without reverting to a conception that places it before—embrace a conception
involving a more meaningful engagement between philosophy and science.
Moreover, in doing so, I think that we can properly address the question of
pluralism and thereby gain some insight into what it would take to secure a
more reasonable pluralism.

In this connection, the theory of special relativity actually serves as a
guide in two respects. First, as already mentioned, like the Copernican case,
it illustrates the point that there are cases where, despite being in a situation
where one has empirical equivalence, one can give theoretical reasons for one
theory over another. Second, it does this in such a way that once one makes
the step to special relativity one sees a kind of pluralism, namely, with respect
to the class of all permissible foliations of Minkowski spacetime—the point
being that it is in principle impossible to use the laws of physics to single out
(in a principled way) any one of these foliations over another49—and so we
change perspective, see each as standing on a par and bundle them all up into
one spacetime: Minkowski spacetime.50 The source of this form of pluralism
is different than Carnap’s—it is driven by developments at the intersection

assert to exist cannot coexist. I am inclined to think that existence in mathematics is
“Consistency + X” but I do not know how to solve for X.

49In the sense that the laws of physics are Lorentz invariant.
50Some metaphysicians accept these physical limitations but are not moved by them.

For example, in his entry on presentism in the The Oxford Handbook of Metaphysics (2003),
Thomas Crisp says that we can just stipulate a preferred foliation. Well, we can do that
but what reason do we have to think that our stipulation captures any structure (either
physical or metaphysical) of our universe? We can also stipulate a preferred center or
preferred direction. The possibilities are endless. But most would maintain that such
stipulations are idle and do not reflect the structure of spacetime. How is the situation
with simultaneity any different?
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of philosophy and physics and is sensitive to developments that fall squarely
within physics.

I want now to examine analogues of these two features in the mathe-
matical case. In Section 4, I will argue that there are cases in mathematics
where theoretical reason presents us with a convincing case for one theory
over another. Indeed I will argue that theoretical reason goes quite a long
way. But there are limitations to our current understanding of the universe
of sets and there is a possibility that we are close to an impasse. In Section 5,
I will investigate the possibility of being in a position where one has reason
to believe that we are faced with a plurality of alternatives that cannot in
principle be adjudicated on the basis of theoretical reason and, moreover,
where this leads us to reconceive the nature of some fundamental notions in
mathematics.

On the way toward this it will be helpful to introduce some machinery
and use it to present a very rough analogy between the structure of physical
theory and the structure of mathematical theory.

To a first approximation, let us take a physical theory to be a formal sys-
tem with a set of coordinative definitions. We are interested in the relation
of empirical equivalence between such theories. Let us first distinguish two
levels of data: The primary data are the observational sentences (such as
“At time t, wandering star w has longitude and latitude (ϕ, ϑ)”) that have
actually been verified; the secondary data are the observational generaliza-
tions (such as “For each time t, wandering star w has longitude and latitude
(ϕ(t), ϑ(t))”). The primary data (through accumulation) can provide us with
inductive evidence of the secondary data. We shall take our notion of em-
pirical equivalence to be based on the secondary data. Thus, two physical
theories are empirically equivalent if and only if they agree on the secondary
data.51 The problem of selection in physics is to select from the equivalence
classes of empirically equivalent theories. Some choices—for example, certain
purely metaphysical and notational choices—are merely matters of expedi-
ence; others—for example, that between Lorentz’s mature theory and special
relativity—are substantive and driven by theoretical reason.

In the mathematical case we can be more exact. A theory is just a (re-
cursively enumerable) formal system and as our notion of equivalence we

51This is not intended as a precise, formal definition—for example, I have said nothing
about what it takes to count as data. So the definition is quite flexible. Nevertheless, it is
sharp enough to serve for our purposes.
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shall take the notion of mutual interpretability in the logician’s sense. The
details of this definition would be too distracting to give here;52 suffice it
to say that the technical definition aims to capture the notion of interpreta-
tion that is ubiquitous in mathematics, the one according to which Poincaré
provided an interpretation of two-dimensional hyperbolic geometry in the
Euclidean geometry of the unit circle, Dedekind provided an interpretation
of analysis in set theory, and Gödel provided an interpretation of the theory
of formal syntax in arithmetic. Every theory of pure mathematics is mutu-
ally interpretable with a theory in the language of set theory. So, for ease
of exposition, we will concentrate on theories in the language of set theory.53

We shall assume that all theories contain ZFC − Infinity. As in the case of
physics we shall distinguish two levels of data: The primary data are the
∆0

1-sentences that have actually been verified (such as, to choose a meta-
mathematical example, “p is not a proof of ¬Con(ZFC)”) and the secondary
data are the corresponding generalizations, which are Π0

1-sentences (such as,
“For all proofs p, p is not a proof of ¬Con(ZFC)”). As in the case of physics,
in mathematics the secondary data can be definitely refuted but never def-
initely verified. Nevertheless, again as in the case of physics, the primary
data can provide us with evidence for the secondary data. Finally, given our
assumption that all theories contain ZFC − Infinity, we have the following
fundamental result: Two theories are mutually interpretable if and only if
they prove the same Π0

1-sentences, that is, if and only if they agree on the
secondary data. Thus, we have a nice parallel with the physical case, with
Π0

1-sentences being the analogues of observational generalizations. The prob-
lem of selection in mathematics is to select from the equivalence classes of
mutual interpretability (which are called the interpretability degrees). Some
choices—for example, certain purely metaphysical and notational choices—
are mere matters of expedience. But in restricting our attention to a fixed
language we have set most of these aside. Other choices are substantive
and fall within the provenance of theoretical reason. For example, let T be
ZFC − Infinity. One can construct a ∆0

2-sentence such that T , T + ϕ and
T + ¬ϕ are mutually interpretable.54 The choice between these two theories

52See chapter 6 of Lindström (2003).
53For our present purposes there is little (if any) loss of generality in this restriction

since our concern now is with theoretical reason and so we do not wish to be distracted
by choices between, say, ZFC− Infinity and PA.

54Such a sentence is called an Orey sentence for T . See Lindström (2003) for the con-
struction of such a sentence.
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is not a matter of mere expedience.
The question of pluralism has two aspects which can now be formulated

as follows: First, setting aside purely metaphysical and notational choices,
can the problem of selection be solved in a convincing way by theoretical
reason? Second, how far does this proceed; does it go all the way or does one
eventually reach a “bifurcation point”; and, if so, could one be in a position
to recognize it? Our approach is to address these questions in a way that
is sensitive to the actual results of mathematics, where here by ‘results’ we
mean results that everyone can agree on, that is, the theorems, the primary
data. But while the data will lie in mathematics, the case will go beyond
mathematics55 and this is what we mean when we say that the case will lie
at the intersection of mathematics and philosophy.

4 The Initial Stretch: First- and Second-

Order Arithmetic

There is currently no convincing case for pluralism with regard to first-order
arithmetic and most would agree that given the clarity of our conception of
the structure of the natural numbers and given our experience to date with
that structure such a pluralism is simply untenable. So, most would agree
that not just for any Π0

1-sentence, but for any arithmetical sentence ϕ, the
choice between PA + ϕ and PA + ¬ϕ is not one of mere expedience. I have
discussed this above and will not further defend the claim here. Instead I
will take it for granted in what follows.

The real concerns arise when one turns to second -order arithmetic, third -
order arithmetic, and more generally, the transfinite layers of the set-theoretic
hierarchy.56

4.1 Independence in Set Theory

One source of the concern is the proliferation of independence results in
set theory and the nature of the forms of independence that arise. Consider

55And necessarily so since we are not stating a theorem.
56Recall that in our setting the various systems of arithmetic (e.g. PA and PA2 (the

second-order axioms of Peano Arithmetic), etc.) are cast in the language of set theory
and that from the point of view of independence there is no loss of generality in this
assumption.
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the statements PU (Projective Uniformization)57 of (schematic) second-order
arithmetic and CH (Cantor’s continuum hypothesis), a statement of third-
order arithmetic. Combined results of Gödel and Cohen show that if ZFC is
consistent then these statements are independent of ZFC: Gödel invented (in
1938) the method of inner models. He defined a canonical and minimal inner
model L of the universe of sets, V , and he showed that CH holds in L. This
had the consequence that ZFC could not refute CH. Cohen invented in (in
1963) the method of forcing (or outer models). Given a complete Boolean
algebra he defined a model V B and showed that ¬CH holds in V B. This had
the consequence that ZFC could not prove CH. Thus, these results together
showed that CH is independent of ZFC. Similar results hold for PU and
a host of other questions in set theory. In contrast to the incompleteness
theorems, where knowledge of the independence of the sentences produced—
Π0

1-sentences of first-order arithmetic—actually settles the statement, in the
case of PU and CH, knowledge of independence provides no clue whatsoever
as to how to settle the statement.

4.2 The Problem of Selection for Second-Order Arith-
metic

How then are we to solve the problem of selection with respect to second-
order arithmetic?

There are two steps in solving the problem of selection for a given degree
of interpretability. The first step is to secure the secondary data by showing
that the Π0

1-consequences of the theories in the degree are true. One way to
do this is to show (ZFC−Infinity)+

⋃
n<ω Con(T �n), where T is some theory

in the degree and T �n is the first n sentences of T . Having thus secured the
secondary data, the second step is to select from the degree. For example,
the degree of ZFC contains ZFC + ¬Con(ZFC), ZFC + PU, ZFC + ¬PU,
ZFC + CH and ZFC + ¬CH, and many other theories. The full problem of
selection for this degree would involve settling all such questions, which is
a massive task. For the moment we shall concentrate on deciding between
ZFC + PU and ZFC + ¬PU. In what follows I shall presuppose ZFC. I will
argue that the choice between ZFC + PU and ZFC +¬PU is not one of mere
expedience; in fact, one can give strong theoretical reasons for ZFC + PU.

57This is the statement that every projective subset of the plane admits a projective
choice function.
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The case will involve the problem of selection for a much higher degree.
But first a word on the structure of the hierarchy of interpretability and large
cardinal axioms.

The structure of the hierarchy of interpretability is more disorderly than
one might expect—it forms a distributive lattice that is neither linearly or-
dered nor well-founded. This is shown via the construction of non-standard
theories via coding techniques. Remarkably, however, when one restricts to
the natural theories that occur in mathematical practice, one finds that the
theories are well-behaved—they are well-ordered under interpretability.58

Extensions of ZFC − Infinity via large cardinal axioms provide us with
a canonical class of representatives within this well-ordered hierarchy in
that given a theory T in the hierarchy one can generally find—via the
dual techniques of inner model theory and forcing—a theory of the form
(ZFC − Infinity) + LCA, where LCA is a large cardinal axiom, such that T
and (ZFC− Infinity) + LCA are mutually interpretable.59 In this way large
cardinal axioms (which are (for the most part) naturally well-ordered) pro-
vide a gauge of the strength of the theories in the hierarchy of interpretability.
The simplest large cardinal axioms are reflection principles.60 Some notable
stepping in the large cardinal hierarchy are strongly inaccessible cardinals,
Mahlo cardinals, measurable cardinals, Woodin cardinals, and supercompact
cardinals.

The higher degree that I shall be working with is that of the theory

T1 = ZFC + there are ω-many Woodin cardinals.

There are many theories of interest in this degree. For example, the theories

T2 = ZFC + there is an ω1-dense ideal on ω1,

T3 = ZFC + ADL(R), and

T4 = ZFC + ADL(R) + MA + ¬CH.

are all in the same degree as T1, that is, T1, T2, T3, and T4 all yield the same
secondary data.61

58This is a mystery that calls for clarification.
59There is an element of imprecision in this claim due to the lack of precision involved

in both the notion of a natural theory and the notion of a large cardinal axiom.
60Indeed ZFC is the result of supplementing our base theory ZFC − Infinity with a

scheme of first-order reflection principles.
61The main results here are due to Woodin. See Koellner (2006) for further discussion

and references.
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The first step is to secure the secondary data. As noted above it suffices
to establish (ZFC − Infinity) +

⋃
n<ω Con(T �n), where T is any one of the

above theories. There is a strong case for this but it would take us too far
afield to present it here. Let me just say that case rests on the intimate
connection between determinacy and inner models of large cardinal axioms
and that the case is so strong that set theorists who have investigated the
network of theorems in this area (the primary data) are quite confident that
T1 (and hence the other theories in its degree) is consistent.62

The second step is to provide theoretical reasons for some of the theories
in the degree. One cannot accept all of them since they are not mutually
consistent (for example, T2 and T4 contradict one another). Nevertheless, I
think that a very strong case can be made for T3. Moreover, T3 implies PU
and hence resolves the problem of selection for ZFC+PU versus ZFC+¬PU.
Again the case for this is based upon (but goes beyond) the primary data,
namely, a large network of mathematical theorems. The case is quite involved
and so we shall only give an overview. For details see Koellner (2006) and
the references therein.

(1) ADL(R) is an axiom that has some degree of intrinsic plausibility.63

But, of course, this is just a starting point. One must look to its consequences
and connections with other statements to determine, for example, whether
its consequences are intrinsically plausible and whether it is implied by other
intrinsically plausible axioms.

(2) ADL(R) has a number of intrinsically plausible consequences—for ex-
ample, that there is no paradoxical decomposition of the unit sphere using
pieces that are definable (in the precise sense of being in L(R)). In fact, in
addition to implying that all subsets of reals in L(R) are Lebesgue measur-
able, ADL(R) implies the other regularity properties for such sets of reals,
such as that they have the property of Baire and the perfect set property.

62For a large piece of the primary data see the articles on determinacy and inner model
theory in the forthcoming Handbook of Set Theory, in particular, Koellner & Woodin
(2009b). It is noteworthy that the reasons are not merely inductively based on the fact
that a contradiction has not yet been found. There is similar inductive support for the
consistency of Quine’s system NF but few are confident that it is consistent. The reasons
for consistency are more involved and make for a very strong case. To underscore the
strength of the case, at the Gödel centenary in Vienna in 2006, Woodin announced that
should anyone prove one of these theories inconsistent he would resign his post and demand
that his position be given to the person who established the inconsistency. (This is not an
advisable strategy for securing tenure.)

63For more on this notion, see Chapter 9 of Parsons (2008).
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In addition, ADL(R) implies that Σ2
1-uniformization holds in L(R). These

consequences are all intrinsically plausible and these results generalize the
features of Borel sets that can be established in ZFC to the level of L(R).
In short, ADL(R) has what appear to be the correct consequences for the
structure theory of the sets of reals in L(R) and this is evidence for ADL(R).

(3) In the above, there is an obvious analogy with the hypothetico-
deductive method in physics, the analogue of a physical theory being ADL(R)

and the analogue of observational data being the intrinsically plausible state-
ments. One difference of course is that the notion of an intrinsically plausible
statement is not very sharp; another is that judgments of intrinsic plausi-
bility are less secure than observational statements. Remarkably, as if to
compensate for this shortcoming, the mathematical case provides us with
something more. To bring this out consider the concern—which arises also
in the physical case—that there might be other theories with the same in-
trinsically plausible (cf. observational) consequences. In the physical case
one can never allay this concern. Remarkably, in the mathematical case one
can: ADL(R) is the only theory that has the above intrinsically plausible con-
sequences, that is, the intrinsically plausible consequences themselves imply
ADL(R) (a result of Woodin).

(4) The pattern in (2) and (3)—where one draws intrinsically plausible
consequences from ADL(R) and then recovers ADL(R)—repeats itself with
respect to other classes of intrinsically plausible consequences. See Koellner
(2006) for some examples.

(5) Let us now turn from consequences to other connections. To begin
with there are other intrinsically plausible axioms—most notably large car-
dinal axioms (by groundbreaking work of Martin, Steel, and Woodin)—that
imply ADL(R).

(6) Large cardinal axioms and axioms of definable determinacy (such as
ADL(R)) spring from entirely different sources. Yet there is an intimate con-
nection between them. It turns out that ADL(R) is equivalent to a statement
asserting the existence of inner models of certain large cardinals.64 We have
here a case where intrinsically plausible principles from completely different
domains reinforce one another.

(7) Not only do large cardinal axioms imply ADL(R), many other theories
imply ADL(R). For example, both T2 and T4 imply ADL(R) despite the fact
that T2 and T4 are incompatible.

64See §8.1 of Koellner & Woodin (2009b).
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(8) The phenomenon in (7) is quite general. Time after time it is shown
that a strong theory, which on the face of it has nothing to do with ADL(R),
actually implies (through a deep result) ADL(R). The technique for establish-
ing this—the core model induction—provides evidence for the claim that all
sufficiently strong natural theories imply ADL(R). In this sense ADL(R) lies in
the “overlapping consensus” of all sufficiently strong natural theories. As one
climbs the hierarchy of interpretability along any natural path—however, re-
mote the apparent subject matter is from determinacy—it appears that one
cannot avoid laying down something that outright implies ADL(R).

This is only a sample of the network of theorems (primary data) upon
which the case for ADL(R) is based. To be sure, the case itself goes beyond
the data, as must any case for a new axiom, in light of the incompleteness
theorems. But it is remarkable that such a strong case can exist. These
arguments do not merely provide practical reasons for adopting ADL(R) as a
matter of expedience; they provide theoretical reasons for accepting ADL(R).65

Thus, we have solved the problem of selection with respect to ADL(R), an
axiom that concerns the structure L(R). Since ADL(R) implies PU we have
also solved the problem of selection for PU. It turns out that in solving the
problem of selection for ADL(R), we have solved the problem of selection for
a host of other statements concerning L(R). In fact, there is a sense in which
ADL(R) is so central that in solving the problem of selection for it we have
given an “effectively complete” solution of the problem of selection for the
entire theory of L(R). We shall spell this out in some detail since once we
are armed with such a “complete solution” at the level of L(R) we will next
ask how far such a solution extends. This will form the basis of our search
for a more reasonable form of pluralism.

The axiom ADL(R) appears to be “effectively complete” for the theory of
L(R). Let us first elaborate, then quantify this. A comparison with PA is
useful here. Of course, neither PA nor ZFC + ADL(R) is complete because
of the incompleteness theorems. However, there are very few statements of
prior mathematical interest that are known to be independent of PA. The
classic example of such a statement is the Paris-Harrington. Still, there are
very few such statements and for this reason people are inclined to regard PA

65A staunch skeptic could refrain from going beyond the primary data, committing to
a statement only when it has been secured in the form of a theorem (“statement ϕ is
provable in system S”). Likewise, in the physical case, a staunch skeptic could refrain
from going beyond the primary data, committing to a statement only when it has been
verified observationally. Each is consistent; neither is reasonable.
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as “effectively complete”. The case with axioms of determinacy is even more
dramatic. Let PD be the restriction of the axiom ADL(R) to the domain of
second-order number theory. In contrast to PA, there are many statements
of prior mathematical interest that are independent of PA2, for example,
PU. But when one adds PD to PA2 this ceases to be the case. In fact,
PA2 + PD appears to be more complete than PA in that, for example, there
is no analogue of the Paris-Harrington theorem. Similar considerations apply
to ADL(R).

Let us try to quantify this and erase the scare quotes around “effectively
complete”. To do this we shall henceforth assume large cardinal axioms.66

Our goal is to introduce a strong logic that sharpens the notion of “effective
completeness” not directly of PD and ADL(R) but of the large cardinal axioms
that imply these axioms. We shall use the hypothesis that there is a proper
class of Woodin cardinals, which we shall abbreviate ‘PCWC’.

The motivating result on “effective completeness” is the following:

Theorem 4.1 (Woodin). Assume ZFC + PCWC. Suppose ϕ is a sentence
and that B is a complete Boolean algebra. Then

L(R) |= ϕ iff L(R)V
B |= ϕ.

Our main (and very powerful) technique for establishing independence in set
theory is set forcing—the construction of such models V B. The above theo-
rem shows that in the presence of a proper class of Woodin cardinals (which
implies ADL(R)) this technique cannot be used to establish independence with
respect to statements about L(R).67

The aim of the strong logic is to capture this “freezing” or “sealing” by
“factoring out” the effects of forcing.

Definition 4.2 (Woodin). Suppose that T is a countable theory in the lan-
guage of set theory and ϕ is a sentence. Then

T |=Ω ϕ

if for all complete Boolean algebras B and for all ordinals α,

if V B
α |= T then V B

α |= ϕ.

66As noted above, many of these axioms are intrinsically plausible and some (though
not all) of the above considerations to ADL(R) apply to them.

67And this is not because the large cardinals are somehow throwing a wrench into
the machinery of forcing. In fact, they fuel that machinery by generating more forcing
extensions.
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A theory T is Ω-satisfiable if there exists an ordinal α and a complete Boolean
algebra B such that V B

α |= T .
This notion of semantic implication is robust in that large cardinal axioms

imply that the question of what implies what cannot be altered by forcing:

Theorem 4.3 (Woodin). Assume ZFC+PCWC. Suppose that T is a count-
able theory in the language of set theory and ϕ is a sentence. Then for all
complete Boolean algebras B,

T |=Ω ϕ iff V B |= “T |=Ω ϕ.”

We are now in a position to reformulate the theorem on “freezing the
theory of L(R)” in terms of Ω-logic (Theorem 4.1).

Definition 4.4. A theory T is Ω-complete for a collection of sentences Γ if
for each ϕ ∈ Γ, T |=Ω ϕ or T |=Ω ¬ϕ.

Theorem 4.5. Assume ZFC + PCWC. Then ZFC is Ω-complete for the
collection of sentences of the form “L(R) |= ϕ”.68

In this sense, large cardinal axioms give an Ω-complete picture of the
theory of L(R). Furthermore, ADL(R) lies at the heart of this picture. This
is how we shall quantify our success in solving the problem of selection with
respect to statements of L(R): Assuming that there is a proper class of
Woodin cardinals, we have a theory that settles (in Ω-logic) every statement
about L(R). Our goal now is to see how far such Ω-complete pictures extend
and whether we could eventually reach a “bifurcation point”.

5 Bifurcation Scenarios

We now turn to “bifurcation scenarios”, that is, scenarios where not only have
our (current) theoretical reasons have failed to settle a given question, say
CH, but where we have reason to believe that no further theoretical reasons

68Although we have stated the Ω-completeness with respect to ZFC, the large cardinals
are really doing the work. For this reason it is perhaps more transparent to formulate the
result by saying that “ZFC + there is a proper class of Woodin cardinals” is Ω-complete
for the collection of sentences of the form “L(R) |= ϕ”, noting that under this formulation
the stated Ω-completeness is trivial unless our background assumptions guarantee that
“ZFC + there is a proper class of Woodin cardinals” is Ω-satisfiable.
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can settle the question.69 One difficulty in articulating such scenarios is that
the space of theoretical reasons one might give is not something that one can
survey in advance.70 We have to do our best and work with what we have.

5.1 An Initial Pass

Some have claimed that the early independence results in set theory already
suffice to secure such a position. For example, it is claimed that the indepen-
dence of CH with respect to ZFC shows that the choice between ZFC + CH
and ZFC + ¬CH is one of mere expedience. It is maintained that although
there may be practical reasons in favour of adopting one axiom over the other
(say for a given purpose at hand) there are no theoretical reasons that one
can give for one over the other.

Now, in response, one might argue that independence from ZFC alone
cannot suffice since (under reasonable assumptions) Con(ZFC) is indepen-
dent of ZFC and yet the choice between ZFC + Con(ZFC) and ZFC +
¬Con(ZFC) is hardly one of mere expedience. But to this the critic can re-
spond the background assumption that ZFC is consistent settles the question
under consideration. The critic can point out that in contrast to Con(ZFC)
(and any Π0

1-sentence for that matter), knowledge of the independence of CH
does not settle CH.

However, there are Π0
2 Orey sentences71 in the language of arithmetic

that also have this feature and yet (as we have argued above) the position
that questions concerning them are questions of mere expedience is simply
untenable. The critic must therefore cite some distinctive feature of the
nature of the independence of CH with respect to ZFC, one that differentiates
it from the case of such Π0

2-sentences.
Perhaps the key difference is that CH is a statement of prior mathematical

interest shown to be independent via set forcing. To this there are two
responses. First, why should this matter? We are interested in truth not

69Compare the difference between (a) knowing that our current understanding of the
physical world does not enable us to detect the luminiferous ether and (b) having reason
to believe that no physical understanding will enable us to detect a luminiferous ether.

70However, the situation in physics is similar—for example, one cannot rule out defini-
tively the possibility that we might one day find a foliation that has fundamental physical
significance and hence that the ultimate laws of physics are not Lorentz invariant.

71Recall that ϕ is an Orey sentence for T if T , T + ϕ and T + ¬ϕ are mutually inter-
pretable.
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human interest. Second, PU is also such a statement and yet we have argued
that the choice between ZFC + PU and ZFC + ¬PU is not one of mere
expedience.72

So I do not think that the critic has a case here. Nevertheless, I want
to see how one might respond on the critic’s behalf. The goal will be to
gain insight into what it would take to have theoretical reasons (driven by
the primary data of mathematics) to believe that a given question of pure
mathematics, say CH, is one of mere expedience.

5.2 A More Promising Approach

Let us begin by considering how far the case for ADL(R) and large cardinal
axioms extends. Gödel had high expectations for large cardinal axioms.
Indeed he went so far as to entertain a generalized completeness theorem for
them:

It is not impossible that for such a concept of demonstrability
[namely, provability from true large cardinal axioms] some com-
pleteness theorem would hold which would say that every proposi-
tion expressible in set theory is decidable from the present axioms
plus some true assertion about the largeness of the universe of all
sets. (Gödel (1946), p. 151)

As a test case he chose CH, a statement of third-order arithmetic.
As we have seen, there has been a partial realization of this program in

that large cardinal axioms provide an Ω-complete picture of second-order
arithmetic and, in fact, all of L(R). How far does this proceed? In a sense
that can be made precise it holds “below CH”.73 Unfortunately, it fails at
the “level of CH”, namely, Σ2

1, as follows from a series of results originating
with Levy and Solovay:

Theorem 5.1. Assume L is a standard large cardinal axiom. Then ZFC+L
is not Ω-complete for Σ2

1.74

72It would be of interest to further investigate the analogies and disanalogies between
independence in arithmetic and set theory and the bearing of such results on philosophical
positions in each domain.

73See §3.3 of Koellner (2006).
74This theorem is stated informally since the notion of a “standard large cardinal axiom”

is not precise. However, one can cite examples from across the large cardinal hierarchy.
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Although large cardinal axioms do not provide an Ω-complete picture of
Σ2

1, it turns out that one can obtain such a picture provided one supplements
large cardinal axioms. Remarkably, CH itself is such a statement.

Theorem 5.2 (Woodin, 1985). Assume ZFC and that there is a proper class
of measurable Woodin cardinals. Then ZFC + CH is Ω-complete for Σ2

1.

Moreover, up to Ω-equivalence, CH is the unique Σ2
1-statement that is Ω-

complete for Σ2
1. Thus, up to Ω-equivalence, there is a unique Σ2

1-sentence
which (along with large cardinal axioms) provides an Ω-complete picture of
Σ2

1, namely, CH.
If one shifts perspective from Σ2

1 to H(ω2), there is a companion result
for ¬CH, assuming the Strong Ω Conjecture.75

Theorem 5.3 (Woodin). Assume ZFC + PCWC. Assume the Strong Ω-
Conjecture.

(1) There is an axiom A such that

(i) ZFC + A is Ω-satisfiable and

(ii) ZFC + A is Ω-complete for the structure H(ω2).

(2) Any such axiom A has the feature that

ZFC + A |=Ω “H(ω2) |= ¬CH ”.

Thus, assuming that there is a proper class of Woodin cardinals and that the
Strong Ω Conjecture holds, there is an Ω-complete picture of H(ω2) and any
such picture involves a failure of CH.

For example, for L one can take “there is a measurable cardinal”, “there is a proper class
of Woodin cardinals”, or “there is a non-trivial embedding j : L(Vλ+1) → L(Vλ+1) with
critical point below λ”.

75Here H(ω2) is the set of all sets that have hereditary cardinality less than ω2. The
Strong Ω Conjecture is an outstanding conjecture in set theory. It is the conjunction
of the Ω Conjecture and the statement “the AD+ Conjecture is Ω-valid”, where the Ω
Conjecture is a conjectured completeness theorem for Ω-logic and the AD+ Conjecture is
the following conjecture: Suppose that A and B are sets of reals such that L(A,R) |= AD+,
L(B,R) |= AD+, and the sets in P(R) ∩ (L(A,R) ∪ L(B,R)) are ω1-universally Baire.
Then either (∆∼

2
1)L(A,R) ⊆ (∆∼

2
1)L(B,R) or (∆∼

2
1)L(B,R) ⊆ (∆∼

2
1)L(A,R). See Woodin (1999) for

definitions of the remaining terms. We caution the reader that in the existing literature
one finds Theorems 5.3 and 5.4 stated with the Ω Conjecture in place of the Strong Ω
Conjecture. However, Woodin recently discovered that the proofs require the latter.

37



These two results raise the spectre of bifurcation at the level of CH. There
are two key questions. First, are there recursive theories with higher degrees
of Ω-completeness? Second, is there a unique such theory (with respect to
a given level of complexity)? The answers to these questions turn on the
Strong Ω Conjecture. For ease of exposition, for the remainder of this paper
we shall assume that there is a proper class of Woodin cardinals.

If the Strong Ω Conjecture holds, then one cannot have an Ω-complete
picture of third-order arithmetic.

Theorem 5.4 (Woodin). Assume ZFC+PCWC. Assume the Strong Ω Con-
jecture. Then there is no recursively enumerable theory A such that ZFC+A
is Ω-complete for Σ2

3.

However, if the Strong Ω Conjecture fails, then such higher levels of Ω-
completeness may be possible. In fact, there may be a (recursively enumer-

able) sequence of axioms ~A such that for some large cardinal axiom L the

theory ZFC + L + ~A is Ω-complete for all of third-order arithmetic. Going
further it could be the case that for each specifiable fragment Vλ of the uni-
verse of sets there is a large cardinal axiom L and a (recursively enumerable)

sequence of axioms ~A such that ZFC +L+ ~A is Ω-complete for the theory of
Vλ. Moreover, it could be the case that any other theory with this feature,
say ZFC+L+ ~B, agrees with ZFC+L+ ~A on the computation of the theory
of Vλ in Ω-logic. This would mean that there is a unique Ω-complete picture
of the universe of sets up to Vλ. Furthermore, it could be the case that all of
these Ω-complete pictures cohere. This would give us a unique Ω-complete
picture of (the successive layers of) the entire universe of sets.

One could argue that such an Ω-complete picture of the entire universe of
sets is the most that one could hope for. Should uniqueness hold that would
be the end of the story from the perspective of Ω-logic for there would be
nothing about the (specifiable fragments of) the universe of sets that could
not be settled on the basis of Ω-logic in this unique Ω-complete picture.

Unfortunately, uniqueness must fail.

Theorem 5.5 (K. and Woodin). Assume ZFC + PCWC. Suppose L is a

large cardinal axiom and ~A is a (recursively enumerable) sequence of axioms
such that

ZFC + L+ ~A is Ω-complete for the theory of Vλ,
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where Vλ is some specifiable fragment of the universe at least as large as Vω+2.
Then there exists a (recursively enumerable) sequence of axioms ~B such that

ZFC + L+ ~B is Ω-complete for the theory of Vλ

but which differs from ZFC + L+ ~A on CH.76

Thus, if there is one Ω-complete picture of such a level of the universe (and
hence of arbitrarily large such levels), then there is necessarily an incompatible
Ω-complete picture. 77

Suppose then that there is one such theory (or a sequence of such theories
for higher and higher levels, all of which extend one another). The advocate
of pluralism might argue as follows: Such an Ω-complete picture is the most
that theoretical reason could hope to achieve. Given that from one such
picture (of the form ZFC +L+ ~A) we can generate others (say ZFC +L+ ~B)
that are incompatible, and given that there is great flexibility (in the choice

of ~B) and that we can pass from one to another (by altering ~B), this shows

that the choice is merely one of expedience. The choice of ~B is analogous to
the choice of a timelike vector in Minkowski spacetime. The choice of such
a vector in Minkowski spacetime induces a foliation of the space relative
to which one can ask whether “A is simultaneous with B” but there is no
absolute significance to such questions independent of the choice of a timelike
vector. Likewise, the choice of the sequence ~B (in conjunction with ZFC+L)
provides an Ω-complete picture relative to which one can ask whether “CH
holds” and many other such questions but there is no absolute significance
to such questions independent of the choice of ~B. As in the case of special
relativity we need to change perspective. There is no sense in searching
for “the correct” Ω-complete picture, just as there is no sense in searching
for “the correct” foliation. Instead of the naive picture of the universe of
sets with which we started we are ultimately driven to a new picture, one
that deems questions we originally thought to be absolute to be ultimately
relativized.

I do not want to endorse this position. I am merely presenting it on
behalf of the advocate of pluralism as the best mathematically driven scenario

76For a more precise statement (one that spells out the notion of “specifiable fragment”
(there called “robustly specifiable fragment”)) see Koellner & Woodin (2009a).

77It should be stressed that the choice of CH is just for illustration. Given one such
theory one has a great deal of control in generating others.
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that I can think of where one could arguably maintain that we had been
driven by the primary data of mathematics to shift perspective and regard
certain questions of mathematics (such as CH) as based on choices of mere
expedience.

A key virtue of this scenario is that it is sensitive to future developments
in mathematics—to rule it out it suffices to prove the Strong Ω Conjecture
and to establish it it suffices to find one such Ω-complete theory. In this way,
by presenting mathematically precise scenarios that are sensitive to mathe-
matical developments, the pluralist and non-pluralist can give the question
of pluralism “mathematical traction” and, through time, test the robustness
of mathematics.

What can we say at present concerning the above pluralist scenario?
Although the scenario is an open mathematical possibility there are reasons
to think that such a scenario cannot happen. For there is growing evidence
for the Strong Ω Conjecture78 and, as noted above, this conjecture rules out
the existence of one (and hence many) such Ω-complete theories. Thus, one
way to definitively rule out the above pluralist scenario is to prove the Strong
Ω Conjecture.

Should it turn out that the Strong Ω Conjecture is true then the pluralist
would have to retreat and present another scenario. Let us consider two such
scenarios.

The first scenario builds on Theorem 5.2 which shows that CH is a Σ2
1-

sentence such that ZFC + L + CH is Ω-complete for Σ2
1 (where L is a large

cardinal axiom) and, moreover, that CH is the unique such sentence (up to
Ω equivalence). If the Strong Ω Conjecture holds then (by Theorem 5.4)
this result is close to optimal in that there is no recursively enumerable
theory A such that ZFC + A is Ω-complete for Σ2

3. However, it is an open
possibility that there an axiom A such that for some large cardinal axiom
L, ZFC + L+A is Ω-complete for Σ2

2. Let us assume that this possibility is
realized and consider the question of uniqueness. For each A such ZFC+L+A
is Ω-complete for Σ2

2 (where L is a large cardinal axiom) let TA be the Σ2
2

theory computed by ZFC + L + A in Ω-logic. The question of uniqueness
simply asks whether TA is unique. A refinement of the techniques used to
prove Theorem 5.5 can be used to show that uniqueness must fail. The first
pluralist scenario is this: There are incompatible Ω-complete pictures of Σ2

2

(granting large cardinal axioms) and the choice between them is one of mere

78See Woodin (2009).
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expedience.
The tenability of this scenario rests on the impossibility of giving theoret-

ical reasons for one such TA over another. Remarkably, from among all of the
theories TA there is a single one that stands out. For it is known (by a result
of Woodin in 1985) that if there is a proper class of measurable Woodin car-
dinals then there is a forcing extension satisfying all Σ2

2 sentences ϕ such that
ZFC + CH + ϕ is Ω-satisfiable. (See Larson, Ketchersid & Zapletal (2008).)
It follows that if the question of existence is answered positively with an A
that is Σ2

2 then TA must be this maximum Σ2
2 theory and, consequently, all

TA agree when A is Σ2
2.79 So, assuming that all such TA contain CH and

that there is a TA where A is Σ2
2, then, although not all TA agree (when A

is arbitrary) there is one that stands out, namely, the one that is maximum
for Σ2

2 sentences.
The second scenario is based on Theorem 5.3 which shows that (granting

the Strong Ω Conjecture) there is an axiom A such that ZFC + A is Ω-
complete for H(ω2) and, moreover, any such axiom has the feature that
ZFC + A |=Ω “H(ω2) |= ¬CH”. For each such axiom A let TA be the theory
of H(ω2) as computed by ZFC + A in Ω-logic. Thus, the theorem shows
that all such TA agree in containing ¬CH. The question then naturally arises
whether TA is unique. A refinement of the techniques used to prove Theorem
5.5 can be used to answer this question negatively. And again the pluralist
might use this “local bifurcation” result to ground the case for pluralism.
But again, there is a TA that stands out, namely, the maximum theory given
by the axiom (∗). (See Woodin (1999).)

In the course of this paper we have seen a number of increasingly sophis-
ticated cases for pluralism. In each instance the case faltered for reasons
that are sensitive to actual developments in mathematics. Perhaps there are
deeper theorems in this vein that would lead us to embrace pluralism. The
point I wish to make is that the real question of pluralism is a deep one,
one that requires the combined efforts of philosophy and mathematics. It is
through exploring the boundless ocean of unlimited possibilities that we can
gain a sure footing in what is actual.

79A natural conjecture is that ♦ is such an A. But even if ♦ is not such an axiom A it
will be in TA.
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