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My research concerns the search for and justification of new axioms in math-
ematics. The need for new axioms arises from the independence results. Let
me explain. In reasoning about a given domain of mathematics (or, in fact,
any domain) the question of justification is successively pushed back further
and further until ultimately one reaches principles that do not admit more
fundamental justification. The statements at this terminal stage are elected
as axioms and the subject is then organized in terms of derivability from the
base of axioms. In the case of arithmetic, this led to the axiom system PA
(Peano arithmetic) and, in the case of set theory, it led to the axiom system
ZFC (Zermelo-Fraenkel set theory with the Axiom of Choice). Set theory is
of particular interest since it is a sufficiently rich framework to incorporate
all areas of mathematics (number theory, analysis, function theory, etc.) and
the system ZFC is the generally accepted background framework of mathe-
matics in the sense that a proof of a mathematical theorem is only regarded
as legitimate if it can in principle be implemented in ZFC. Now, it turned
out that there were some statements that were difficult to resolve. This is
true, for example, of the statements PU (the statement that all projective
sets admit of a projective uniformization) and CH (Cantor’s continuum hy-
pothesis). These statements were intensively investigated during the early
era of set theory but little progress was made. The explanation for the lack
of success was ultimately provided by results of Gödel and Cohen. For they
showed that it is in principle impossible to resolve these statements on the

basis of ZFC. And a similar situation prevails with regard to many other
statements from diverse areas of mathematics. This is quite surprising. It
means that if we are to have a hope of answering these questions we need
new axioms.

This project has both a mathematical component and a philosophical
component. On the mathematical side, one must find axioms that are suffi-
ciently strong to do the work. On the philosophical side, one must determine
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what would count as a justification and whether the axioms in question are
justified. These two components are intertwined and have contact points
with a number of traditional philosophical questions, such as the question
of the nature of reason (Are there “absolutely undecidable” statements?)
and the question of pluralism (Are there incompatible yet equally legitimate
mathematical frameworks?). Some have maintained that no reasons can be
provided for axioms that settle statements like PU and CH. Others have
gone further, maintaining that there is really a multitude of equally legiti-
mate yet incompatible frameworks, some which settle CH positively, others
which settle it negatively. These are the questions that animate my work.

It will be helpful to begin with a general comment on my approach and
here it is useful to draw a comparison with the philosophy of physics. In the
philosophy of physics, there are two kinds of work. First, there is work that
proceeds in relative independence of contemporary developments in physics.
Second, there is work that is closely tied to contemporary developments in
physics. Both fields are quite active. In the philosophy of mathematics,
one can draw a similar distinction. But in the case of the philosophy of
mathematics, most contemporary work proceeds in relative independence of
the current developments in mathematics. Although much excellent work
has been done in this spirit, I think that there is much to be gained from
pursuing a variety of philosophy of mathematics that is more intimately
connected with current work in mathematics. Not only is there much to
be gained from assessing the philosophical significance of existing results;
there is even more to be gained through the interaction of the philosophy of
mathematics with developments in mathematics. One of my goals is to prove
theorems that are motivated by and shed light on philosophical questions.

It is sensible to approach the search for new axioms in a stepwise fash-
ion, seeking first axioms that resolve certain low-level questions and then
proceeding upward to questions of greater complexity. In what follows I
will describe my past and current work on three stages of this program: (1)
reflection principles, (2) axioms of definable determinacy and large cardi-
nal axioms, and (3) the continuum hypothesis and beyond. In the first two
cases (which cover second-order arithmetic (which is where PU resides)), the
mathematical landscape with regard to the implications of new axioms has
stabilized and we now have many of the resources needed to address the issue
between the pluralist and the non-pluralist. In the third case (which con-
cerns third- and higher-order arithmetic (which is where CH and everything
else resides)), the subject awaits further mathematical developments. That
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is where my current research lies.1

1 Reflection Principles

Gödel drew a distinction between intrinsic and extrinsic justifications. An
intrinsic justification of a statement concerning a given domain is one which
is grounded in principles implicit in the conception of the domain. For ex-
ample, mathematical induction is grounded in the conception of the natural
numbers. In contrast an extrinsic justification of a statement is one that is
not grounded solely in principles implicit in the conception of the domain. For
example, a justification of a statement in terms of its fruitful consequences
would count as an extrinsic justification. Intrinsic justifications are certainly
more in line with traditional conceptions of mathematics. For this reason
it is of interest to determine how far they can take us and, in particular,
whether in the end we must resort to extrinsic justifications.

Reflection principles are the best current contender for new axioms in set
theory that admit of an intrinsic justification. Indeed, some (most notably,
Tait) have argued that intrinsic justifications are exhausted by reflection prin-
ciples. Reflection principles aim to articulate the idea that the extent of the
universe of sets cannot be described from below. The distinctive axioms of
extent of ZFC (namely, Infinity and Replacement) are derivable from reflec-
tion principles and, furthermore, reflection principles imply the existence of
large cardinals that are beyond the reach of ZFC. In this regard they can be
used to substantiate Gödel’s claim that certain small large cardinal axioms
are as justified as the standard axioms of set theory. The hope, of course, is
to go further and show that reflection principles imply large cardinal axioms
which are sufficiently strong to effect a significant reduction in incomplete-
ness. And, indeed, it is often maintained that reflection principles are capable
of securing very strong large cardinal axioms. If this were indeed the case,
then reflection principles (and hence intrinsic justifications, assuming that
they did indeed secure reflection principles) would be capable of taking us
quite far in effecting a significant reduction in incompleteness.

To asses just how far reflection principles can take us, we need to do

1For a related account of my research interests, see the table of contents and intro-
duction to [7]. The body of that work contains a systematic account of my work in the
area, though [2], [3], [5], and [6]—which are closely connected—are operating largely in
the background.
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two things: First, we need a precise explication of the notion of a “signif-
icant reduction in incompleteness.” Second, we need to examine both the
philosophical thesis that reflection principles are intrinsically justified and
the mathematical situation concerning their strength.

I undertook this investigation in [4], focusing on the general reflection
principles of Tait. On the philosophical side, I argue that intrinsic justifi-
cations are quite limited in terms of the strength of the reflection principles
which they can secure. On the mathematical side, I prove three limitative
results concerning general reflection principles. The first theorem carves out
a class of general reflection principles and shows that they are consistent
relative to a weak large cardinal axiom, namely, the axiom asserting that
the Erdös cardinal κ(ω) exists. The second theorem shows that the remain-
ing reflection principles are inconsistent. The third theorem shows that this
is a sharp dichotomy in the sense that under a very fine stratification of
the hierarchy of general reflection principles, as soon as one strengthens the
consistent principles one arrives at inconsistent principles.

These results have a number of interesting philosophical consequences.
First, the inconsistency result shows that serious problems can arise even
when one is embarked on the project of unfolding the content of a concep-
tion. It should give us pause in placing too much confidence in the security
of so-called intrinsic justifications. Second, the consistency result shows that
intrinsic justifications, insofar as they are exhausted by the general reflection
principles discussed above, cannot yield a significant reduction in incomplete-
ness. Finally, these results can be used to provide a rational reconstruction
of Gödel’s early view that V = L, PU, and CH are “absolutely undecidable.”
For, if one has a conception of set theory which admits only intrinsic justi-
fications and if one thinks that these are exhausted by reflection principles,
then the above results make a case for the claim that these statements really
are “absolutely undecidable”. Fortunately, extrinsic justifications go a long
way and I believe that one can make a strong extrinsic case for axioms that
settle V = L and PU.
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2 Definable Determinacy and Large Cardi-

nals

The above limitative results motivate the need to broaden the investigation
and examine extrinsic justifications, which, recall, are justifications that in-
volve more than what can be said to be implicit in the underlying conception.
There are really two general approaches to new axioms—the local approach,
which aims to understand the universe of sets level by level, and the global

approach, which aims to understand the global structure of the universe of
sets.

Faced with the independence of many of the questions of descriptive set
theory—which includes the statements of second-order arithmetic and the
statements concerning L(R)—set theorists took two approaches to finding
new axioms—a local approach based on axioms of definable determinacy and
a global approach based on large cardinal axioms. Both of these approaches
are examined from a contemporary perspective in [1]. (See also Section 4 of
[5] and Chapter 5 of [7].) I argue that a network of theorems (many of which
are contained in [9]) enables one to make a strong case for axioms of defin-
able determinacy and large cardinal axioms. These axioms are “effectively
complete” with respect to statements of second-order arithmetic and L(R).
In fact, in a sense that can be made precise, they are “effectively complete”
with respect to all statements of complexity strictly “below” that of CH. For
example, they imply V 6= L and PU.

There is not sufficient space here to describe the case in detail. Let me
just make a few points, concentrating, for definiteness, on the axiom ADL(R),
which asserts that all sets of reals in L(R) are determined. First, this axiom
leads to a “complete” analysis of the structure L(R) in much the way that
V =L leads to a “complete” analysis of L. One sign of this is the fact (discov-
ered by Woodin) that under large cardinal assumptions (at roughly the level
of ADL(R)) the theory of L(R) cannot be altered by forcing. Second, it turns
out that there is a very close connection between the local approach based
on axioms of determinacy and the global approach based on large cardinal
axioms. For large cardinal axioms imply axioms of definable determinacy.
In fact, axioms of definable determinacy are equivalent to axioms asserting
the existence of inner models of large cardinals. Finally, this inner model-
theoretic connection leads to one of the strongest arguments for ADL(R): This
axiom is inevitable in the sense that it appears to be implied by all “natural”
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theories of sufficiently strength. This includes theories that are incompatible
with one another. In short, ADL(R) lies in the “overlapping consensus” of all
sufficiently strong “natural” theories.

As noted above, in a sense that can be made precise, the above case
extends to all statements of complexity strictly “below” that of CH. However,
it has not been a success at the level of CH and there are reasons (stemming
from work of Levy and Solovay) for thinking that this is the final word on
the matter. With CH, it appears that one reaches a “phase transition” in
the search for new axioms.

3 The Continuum Hypothesis and Beyond

This brings me to my current and future research, which concerns the prospect
of resolving statements at the level of CH and beyond. The project has two
closely related components. The first involves exploring the space of possi-
bilities under which it would be reasonable to say that statements like CH
are “absolutely undecidable” or that there is a plurality of equally legitimate
systems, some of which resolve CH positively, others which resolve it nega-
tively. The second involves exploring the space of possibilities under which
it would be reasonable to say that CH has been solved. I have taken initial
steps in both directions and will discuss them in turn.

3.1 Prospects for Bifurcation

There are many approaches to the question of pluralism that treat the ques-
tion in a manner that is insufficiently sensitive to developments in mathe-
matics. I discuss and criticize several such approaches in [2] and [5]. In [5] I
suggest that there is room (and historical precedent) for a more meaningful
engagement between philosophy and the exact sciences and, moreover, that
it is through such an engagement that we can properly approach the question
of pluralism in mathematics. I lay the groundwork for this new orientation by
drawing a structural parallel between physics and mathematics. Einstein’s
work on special relativity is taken as an exemplar of the kind of meaningful
engagement I have in mind. For it is with Einstein that we come to see, for
reasons at the intersection of philosophy and science, that statements once
thought to have absolute significance (such as “A is simultaneous with B”)
are ultimately relativized. Our question then is whether something similar
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could happen in arithmetic or set theory, that is, whether for reasons at
the intersection of philosophy and mathematics—reasons sensitive to actual
developments in mathematics—we could come to see that statements once
thought to have absolute significance (such as CH) are ultimately relativized.

Let me discuss one scenario in which one could plausibly make a case
for pluralism. It involves the failure of a very optimistic scenario for finding
axioms that mitigate the effects of our current independence machinery.

It is well known that in contrast to the theory of L(R), traditional large
cardinal axioms cannot settle CH, the reason being that they are invariant
under small forcing and yet one can alter the truth-value of CH by small
forcing. Nevertheless, although one cannot have generic absoluteness at the
level of Σ2

1 (the level of CH), Woodin showed that one can have conditional

generic absoluteness; more precisely, assuming that there is a proper class
of measurable Woodin cardinals, any two generic extensions that satisfy CH
agree on all Σ2

1-statements. In this sense CH “freezes” the Σ2
1-theory. More-

over, CH is the unique such Σ2
1-statement, in that any other Σ2

1-statement
with this feature “freezes” the Σ2

1-theory in the same way.
This can be conveniently reformulated in terms of a strong logic known

as Ω-logic as follows: Assuming that there is a proper class of measurable
Woodin cardinals, ZFC + CH is Ω-complete for Σ2

1 in the sense that for any
Σ2

1-sentence ϕ, either

ZFC + CH |=Ω ϕ or ZFC + CH |=Ω ¬ϕ.

Moreover, CH is unique in that any other Σ2
1-sentence A with this feature is

Ω-equivalent to CH.
This result motivates the following optimistic scenario, which assumes

large cardinal axioms: There may be a (recursively enumerable) sequence of

axioms ~A such that for some large cardinal axiom L the theory ZFC+L+ ~A

is Ω-complete for all of third-order arithmetic. Going further, it could be
the case that for each specifiable fragment Vλ of the universe of sets there is
a large cardinal axiom L and a (recursively enumerable) sequence of axioms
~A such that ZFC + L + ~A is Ω-complete for the theory of Vλ. Moreover, it
could be the case that any other theory with this feature, say ZFC + L + ~B,
agrees with ZFC + L + ~A on the computation of the theory of Vλ in Ω-logic.
This would mean that there is a unique Ω-complete picture of the universe of
sets up to Vλ. Furthermore, it could be the case that all of these Ω-complete
pictures cohere. This would give us a unique Ω-complete picture of (the
successive layers of) the entire universe of sets.
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One could argue that such an Ω-complete picture of the entire universe of
sets is the most that one could hope for. Should uniqueness hold, that would
be the end of the story from the perspective of Ω-logic for there would be
nothing about the (specifiable fragments of the) universe of sets that could
not be settled on the basis of Ω-logic in this unique Ω-complete theory.

Unfortunately, uniqueness must fail. In joint work, Woodin and I proved
that if there is one Ω-complete picture of such a level of the universe (and
hence of arbitrarily large such levels), then there is necessarily an incompatible

Ω-complete picture. For example, given an Ω-complete picture, say ZFC +
L+ ~A, one can manufacture another, say ZFC+L+ ~B, such that the two differ
on CH. It should be stressed that the choice of CH is just for illustration.
Given one such theory, one has a great deal of control in generating others.

Suppose then that there is one such theory (or a sequence of such theories
for higher and higher levels, all of which extend one another). The advocate
of pluralism might argue as follows: Such an Ω-complete picture is the most
that theoretical reason could hope to achieve. Given the fact that from one
such picture (say ZFC + L + ~A) we can generate others (say ZFC + L + ~B)
that are incompatible, and given that there is great flexibility (in the choice

of ~B) and that we can pass from one to another (by altering ~B), this shows

that the choice is merely one of expedience. The choice of ~B is analogous to
the choice of a timelike vector in Minkowski spacetime. The choice of such
a vector in Minkowski spacetime induces a foliation of the space relative
to which one can ask whether “A is simultaneous with B” but there is no
absolute significance to such questions independent of the choice of a timelike
vector. Likewise, the choice of the sequence ~B (in conjunction with ZFC+L)
provides an Ω-complete picture relative to which one can ask whether “CH
holds” (and many other such questions) but there is no absolute significance

to such questions independent of the choice of ~B. As in the case of special
relativity we need to change perspective. There is no sense in searching
for “the correct” Ω-complete picture, just as there is no sense in searching
for “the correct” foliation. Instead of the näıve picture of the universe of
sets with which we started we are ultimately driven to a new picture, one
that deems questions we originally thought to be absolute to be ultimately
relativized.

I do not want to endorse this position. I am merely presenting it on
behalf of the pluralist as the best scenario that I can think of where one
could arguably maintain that we had been driven by the primary data of
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mathematics to shift perspective and regard certain questions of mathematics
(such as CH) as based on choices of mere expedience.

A key virtue of this scenario is that it is sensitive to future developments
in mathematics. For to rule it out it suffices to prove the Ω Conjecture (an
outstanding conjecture in set theory) and to establish it it suffices to find one
such Ω-complete theory. In this way, by presenting mathematically precise
scenarios that are sensitive to mathematical developments, the pluralist and
non-pluralist can give the question of pluralism “mathematical traction” and,
through time, test the robustness of mathematics.

What can we say at present concerning the above pluralist scenario? We
can say this: Although it is an open mathematical possibility, there are
reasons to think that such a scenario cannot obtain. For there is growing
evidence for the Ω Conjecture and, as noted above, this conjecture rules out
the existence of one (and hence many) such Ω-complete theories. Thus, one
way to definitively rule out the above pluralist scenario is to prove the Ω
Conjecture.2

3.2 Prospects for Resolution

We turn now to the positive approach. Here the goal is to examine mathe-
matically precise scenarios in which it would be reasonable to say that CH
and other statements about higher levels of the universe of sets have been
settled. There are a number of approaches that have appeared in recent
years and the task of exploring the space of possibilities is certainly more
than one person can hope to achieve. I have had the good fortune of joining
up with Hugh Woodin (the discoverer of much of the relevant mathematics)
to embark on this project. Our findings are contained in the monograph [7].
Here I can give but the briefest sketch.

There are two local approaches to CH, one arguing in favour of CH,
another arguing in favour of ¬CH. These are presented in Chapter 6 of [7].
Unfortunately, at present, there is no strong local case for one alternative
over the other. Fortunately, there are two promising global approaches—one
in terms of inner model theory and one in terms of structural theory.

2Should the Ω Conjecture be true, the proponent of pluralism would have to retreat
and make another proposal. Two such proposals are discussed at the end of [8], but in
each case one can show that the symmetry between the alternatives is broken and that
there is one alternative that stands out. Once again, pluralism is undermined.
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Inner model theory aims to produce “L-like” models that contain large
cardinal axioms. For each large cardinal axiom Φ that has been reached by
inner model theory, one has an axiom of the form V = LΦ. This axiom has the
virtue that (just as in the simplest case of V = L) it provides an “effectively
complete” solution regarding questions about LΦ (which, by assumption, is
V ). Unfortunately, it turns out that the axiom V =LΦ is incompatible with
stronger large cardinal axioms Φ′. For this reason, axioms of this form have
never been considered as plausible candidates for new axioms.

But recent developments in inner model theory (due to Woodin) show
that everything changes at the level of a supercompact cardinal. These de-
velopments show that if there is an inner model N which “inherits” a super-
compact cardinal from V (in the manner in which one would expect, given
the trajectory of inner model theory), then there are two remarkable conse-
quences: First, N is close to V (in, for example, the sense that for sufficiently
large singular cardinals λ, N correctly computes λ+). Second, N inherits all
known large cardinals that exist in V . Thus, in contrast to the inner models
that have been developed thus far, an inner model at the level of a supercom-
pact would provide one with an axiom that could not be refuted by stronger
large cardinal assumptions.

The issue, of course, is whether one can have an “L-like” model (one
that yields an “effectively complete” axiom) at this level. There is reason
to believe that one can. There is now a candidate model LΩ that yields
an axiom V = LΩ with the following features: First, V = LΩ is “effectively
complete.” Second, V =LΩ is compatible with all large cardinal axioms.
Thus, on this scenario, the ultimate theory is the (open-ended) theory ZFC+
V =LΩ +LCA, where LCA is a schema standing for “large cardinal axioms.”
The large cardinal axioms will catch instances of Gödelian independence
and the axiom V = LΩ will capture the remaining instances of independence.
This theory would imply CH and settle the remaining undecided statements.
Independence would cease to be an issue.

It turns out, however, that there are other candidate axioms that share
these features, and so the spectre of pluralism reappears. For example, there
are axioms V = LΩ

S
and V = LΩ

(∗). These axioms would also be “effectively
complete” and compatible with all large cardinal axioms. Yet they would
resolve various questions differently than the axiom V =LΩ. For example,
the axiom, V =LΩ

(∗) would imply ¬CH. How, then, is one to adjudicate
between them?

This brings me to the second global approach, one that promises to select
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the correct axiom from among V =LΩ, V = LΩ
S
, V = LΩ

(∗), and their variants.
This approach is based on the remarkable analogy between the structure
theory of L(R) under the assumption of ADL(R) and the structure theory of
L(Vλ+1) under the assumption that there is an elementary embedding from
L(Vλ+1) into itself with critical point below λ. This embedding assumption

is the strongest large cardinal axiom that appears in the literature.
The analogy between L(R) and L(Vλ+1) is based on the observation that

L(R) is simply L(Vω+1). Thus, λ is the analogue of ω, λ+ is the analogue
of ω1, and so on. As an example of the parallel between the structure the-
ory of L(R) under ADL(R) and the structure theory of L(Vλ+1) under the
embedding axiom, let us mention that in the first case, ω1 is a measurable
cardinal in L(R) and, in the second case, the analogue of ω1—namely, λ+—
is a measurable cardinal in L(Vλ+1). This is just one instance from among
many examples of the parallel.

Now, we have a great deal of information about the structure theory of
L(R) under ADL(R). Indeed, as we noted above, this axiom is “effectively
complete” with regard to questions about L(R). In contrast, the embedding
axiom on its own is not sufficient to imply that L(Vλ+1) has a structure the-
ory that fully parallels that of L(R) under ADL(R). However, the existence
of an already rich parallel is evidence that the parallel extends, and we can
supplement the embedding axiom by adding some key components. When
one does, something remarkable happens: the supplementary axioms become
forcing fragile. This means that they have the potential to erase indepen-
dence and provide non-trivial information about Vλ+1. For example, these
supplementary axioms might settle CH and much more.

The difficulty in investigating the possibilities for the structure theory of
L(Vλ+1) is that we have not had the proper lenses through which to view it.
The trouble is that the model L(Vλ+1) contains a large piece of the universe—
namely, L(Vλ+1)—and the theory of this structure is radically underdeter-
mined. The results discussed above provide us with the proper lenses. For
one can examine the structure theory of L(Vλ+1) in the context of ultimate
inner models like LΩ, LΩ

S
, LΩ

(∗), and their variants. The point is that these
models can accommodate the embedding axiom and, within each, one will
be able to compute the structure theory of L(Vλ+1).

This provides a means to select the correct axiom from among V = LΩ,
V =LΩ

S
, V = LΩ

(∗), and their variants. One simply looks at the L(Vλ+1) of

each model (where the embedding axiom holds) and checks to see which has
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the true analogue of the structure theory of L(R) under the assumption of
ADL(R). It is already known that certain pieces of the structure theory cannot

hold in LΩ. But it is open whether they can hold in LΩ
S
.

In our monograph we map out various scenarios for how the future might
unfold. Let me mention one such (very optimistic) scenario: The true ana-
logue of the structure theory of L(R) under ADL(R) holds of the L(Vλ+1) of
LΩ

S
but not of any of its variants. Moreover, this structure theory is “effec-

tively complete” for the theory of Vλ+1. Assuming that there is a proper class
of λ where the embedding axiom holds, this gives an “effectively complete”
theory of V . And, remarkably, part of that theory is that V must be LΩ

S
.

This (admittedly very optimistic) scenario would constitute a very strong
case for axioms that resolve all of the undecided statements.

I do not wish to place too much weight on this particular scenario. It is
just one of many that we discuss. My main point is that we are now in a
position to write down a list of definite questions with the following features:
First, the questions in this list will have answers—independence is not an
issue. Second, if the answers converge then one will have strong evidence for
new axioms settling the undecided statements; while if the answers oscillate,
one will have evidence that these statements are “absolutely undecidable”
or that we must embrace pluralism. In this way the questions of “absolute
undecidability” and pluralism are given mathematical traction. I conjecture
that the answers will converge.

4 Other

1. In the above discussion I have considered a large segment of the hierarchy
of mathematical systems. But there are other regions of this hierarchy that
I wish to investigate. Let me mention the two extremes. At the very low
level there is the question of finding the appropriate system corresponding
to the philosophical position known as strict finitism. Typically, advocates
of this view (such as Nelson) accept Q but reject the totality of exponen-
tiation. However, Visser has shown that exponentiation is interpretable in
Q + Con(Q). Thus, this stance would appear to violate the principle of re-
flective closure. The question then arises: What statements beyond Q is
the strict finitist committed to? Is there even a stable foundational position
here?

Moving to the other extreme, I am interested in the hierarchy of large
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cardinal axioms that are inconsistent with AC, the first being the axiom
(due to Reinhardt) that asserts the existence of a non-trivial elementary
embedding of the universe into itself. Are these axioms consistent in ZF? If so
is there any interesting structure theory? Supposing that there is, one might
consider the foundational position that regards AC as a limitative axiom
(much like V = L) and as something that holds only in a certain context. Is
such a foundational position tenable?

2. Closely related to this last question is the question of absolute de-
finability. Gödel proposed ordinal definability as a candidate for the notion
of absolute definability. One reason for this particular proposal is that any
candidate for an absolute notion of definability should be such that it cannot
be transcended via diagonalization. Moreover, any notion of definability that
does not render all of the ordinals definable can be so transcended (since, by
considering the least ordinal that is not definable according to the notion, we
exhibit a richer notion of definability). This suggests ordinal definability as
the appropriate notion. But is it really “absolute”? There are other criteria
of absoluteness. For example, one would expect that if the notion of ordinal
definability is truly absolute then there should be no non-trivial embedding
from HOD into HOD, where HOD is the class of sets that are hereditarily
ordinal definable. It is open whether there can be such an embedding.

3. There has been a great deal of work showing that certain “natu-
ral” statements of first-order arithmetic require strong assumptions for their
positive resolution. There is a wealth of opportunities in the context of
second-order arithmetic. In fact, in this realm one can find statements that
were arguably of “prior mathematical” interest and yet require very strong
assumptions for their positive resolution. For example, the early analysts
intensively studied the projective sets and they considered the uniformiza-
tion problem. The projective sets are the subsets of R

n (where we treat the
reals as ωω, as is customary in descriptive set theory) that can be obtained
from closed sets by alternating the operations of projection and complemen-
tation. Consider the third level of this hierarchy, that is, the sets that can
be obtained from the closed sets by applying projection and complemen-
tation three times. Call these sets the Π1

3-sets. Let Π1
3-uniformization be

the statement that every Π1
3-subset of the plane admits of a Π1

3-uniformizing
function. This statement was the kind of statement that the early analysts
investigated. They also considered such statements as PM and PB asserting,
respectively, that all projective sets are Lebesgue measurable and that all
projective sets have the property of Baire. Now take these three statements
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together. It is a corollary of work of Steel that these three statements imply
the consistency of ZFC + “There is a Woodin cardinal.” Thus, we have here
a case where statements that were of prior mathematical interest require a
theory of astonishing power for their positive resolution. I suspect that there
are many more examples in this vein.

4. Another interesting line of investigation involves the exploration of
analogies and disanalogies between the kinds of independence one finds in set
theory and the kinds of independence one finds in arithmetic. For example,
in the set theoretic case, there are “natural” examples of Orey sentences, for
example CH. In the case of arithmetic, one can use Gödelian techniques to
manufacture “artificial” Orey sentences but there are no known “natural”
examples. The key difference, of course, is that in set theory one has the
technique of forcing and there is no known analogue of this technique for
arithmetic. Are there “natural” Orey sentences for arithmetic? The search
for such a sentence could lead the a new independence technique.

This is just one of many questions in an area that looks for parallels be-
tween the kinds of independence in arithmetic and the kinds of independence
in set theory. I have undertaken a preliminary study of this subject in [3].

5. Thus far I have concentrated on my research interests in the founda-
tions of mathematics. But I also have strong interests in other fields, most
notably, early analytic philosophy, the history of the relationship between
philosophy and the exact sciences, and the philosophy of physics.

In early analytic philosophy, most of my research has concentrated on
Russell, Carnap, and the logical positivists. I have had a long standing
preoccupation (one might say obsession) with Russell’s early work on logic
and the foundations of mathematics. I have started to write a book on the
subject but I expect that it will be some time before it is completed. In [2] I
critically analyze Carnap’s views on logic and the foundations of mathematics
from a contemporary perspective. I have done some work on the engagement
of the logical positivists with the special theory of relativity and will explore
this topic further in a forthcoming course.

My work in the history of the exact science and the philosophy of physics
has, for the most part, been confined to teaching courses and supervising
theses on these subjects. I am interested in these subjects both as subjects
in their own right and because I think that some of the problems I have
struggled with in the foundations of mathematics have cousins within these
disciplines (on which see [5]). I hope one day to make contributions that fall
squarely in these fields, especially in the philosophy of physics.
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