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Main Theme

Strong forcing axioms (MM, PFA) imply the existence of ideals
with interesting generic ultrapowers; these generic ultrapowers
have critical point ω2.

Vaguely: For sufficiently large classes Γ of posets, MA(Γ) implies
there are ideals I whose positive-set forcings are “almost” in Γ.
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Motivation: Condensation

The (duals of the) ideals will concentrate on M ∈ ℘ω2(Hθ) which
have condensation-like properties.

Gödel’s Condensation Lemma for L: whenever M ≺ (Hθ,∈), if
σM : HM → Hθ is the inverse of Mostowski Collapse of M then for
every α ∈ HM ∩ ORD: (Lα)HM = Lα.

So the function α 7→ Lα condenses on M.
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Motivation: Two condensation-like principles under strong
forcing axioms

Strong forcing axioms imply condensation-like properties:

I (Viale-Weiss) Proper Forcing Axiom implies ISP

I (Foreman) Martin’s Maximum implies highly simultaneous
(“diagonal”) stationary set reflection



Motivation: A condensation principle under PFA

Theorem
(Viale/Weiss): Assume PFA and fix regular Ω >> θ ≥ ω2. There
are stationarily many M ∈ ℘ω2(HΩ) such that whenever
N 7→ F (N) ⊂ N is a slender function on ℘ω2(Hθ) and F ∈ M, then
M “catches” F .

I i.e. if σ : M̄ → M is inverse of trans. collapse and
Y := F (M ∩ Hθ), then σ−1“Y ⊂ M̄ is an element of M̄

I So M detects a lot of 2nd order information about itself.
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Motivation: A condensation principle under MM

Theorem
(Foreman): Assume MM and suppose θ ⊂ H ⊆ Hθ where |H| = θ.
Fix a partition 〈Ri | i ∈ H〉 of θ ∩ cof(ω) into stationary sets.

Then there are stationarily many (internally approachable)
M ∈ ℘ω2(H) such that:

Ri reflects to sup(M ∩ θ) ⇐⇒ i ∈ M (1)

I This implies: if σ : M̄ → M is inverse of collapse map, then M̄
is correct about stationarity of every σ−1(Ri ) (for Ri ∈ M
from the fixed partition).

I Again, M detects some 2nd order information.
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Outline

I Notation and background

I Stationary set reflection and connections with:
I Condensation of NS

I Generic embeddings with critical point ω2

I The Diagonal Reflection Principle (DRP)

I Forcing axioms imply DRP
I And a detour involving MA(Γ) and ideals whose

positive-set-forcings are in Γ



Notation and background

I ℘κ(Hθ) := {M ≺ Hθ | |M| < κ and M ∩ κ ∈ κ}

I IAω1 is the class of M such that there is some ∈-increasing,
continuous elementary chain 〈Nα | α < ω1〉 of countable
elementary submodels of M such that

I
⋃
α<ω1

Nα = M

I Every proper initial segment of ~N is element of M

I ICω1 defined similarly, except only require each Nα ∈ M
(equiv: M ∩ [M]ω contains a club)

This talk focuses on ℘ω2(Hθ) ∩ ICω1 .
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Stationary set reflection

Definition
A set S reflects at γ iff S ∩ γ is stationary in γ. A set S ⊂ κ
reflects iff there is a γ < κ s.t. S reflects at γ.

If κ is measurable (or just weakly compact), then:

I every stationary subset of κ reflects.

I V Col(ω1,<κ) |= “every stationary subset of ω2 ∩ cof(ω)
reflects”

I The quoted statement is equiconsistent with a Mahlo cardinal
(Harrington/Shelah)
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Simultaneous stationary reflection

We can also require distinct sets to have a common reflection
point. If κ is measurable, then:

I Every < κ-sized collection of stationary sets have a common
reflection point

I V Col(ω1,<κ) |= “every ω1-sized collection of stationary subsets
of ω2 ∩ cof(ω) have a common reflection point”

I The quoted statement is equiconsistent with a weakly compact
cardinal (Magidor)



Generalized stationary reflection

For stationary R ⊂ [Hθ]ω, say R reflects to M iff R ∩ [M]ω is
stationary in [M]ω.

I i.e. for every algebra A on M, there is an N ∈ R with N ≺ A.

“For every regular θ ≥ ω2, every stationary R ⊂ [θ]ω reflects to an
M of size ω1”:

I has powerful consequences if θ is large, e.g. failure of square,
NSω1 is precipitous and more (F-M-S)

I follows from MM (Foreman-Magidor-Shelah)

I holds in V Col(ω1,<κ) where κ is supercompact
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Stationary reflection and condensation of NS

“R reflects to M” is equivalent to saying that the transitive
collapse of M is correct about the stationarity of the preimage of
R. (assuming M is sufficiently approachable)

Proof: ( =⇒ ): Suppose R ∈ M reflects to M. Let σ : H̄ → M
and σ(R̄) = R. So H̄ |= “R̄ is stationary.”

NTS: R̄ is really stationary.

I In V let Ā = (H̄, (f̄n)n∈ω)

I Need to find a N̄ ≺ Ā s.t. N̄ ∈ R̄

I Use σ to transfer Ā to a structure A = (M ∩ Hθ, (fn)n).

I Since R ∩ [M]ω is stationary and M ∩ [M]ω contains a club
(this is the approachability requirement on M), there is an
N ∈ R ∩M ∩ [M]ω such that N ≺ A.

I Then σ−1(N) ∈ R̄ and σ−1(N) ≺ Ā.
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Other characterizations, and generic ultrapowers

Let R ⊂ [Hθ]ω be stationary, and Z := {M ≺ HΩ | M ∩Hθ ∈ ICω1}
(where Ω >> θ; note Z is stationary). TFAE:

1. R reflects to stationarily many M ∈ Z .

2. There are stationarily many M ∈ Z such that R condenses
correctly on M;

3. There is a stationary S ⊂ Z such that whenever
j : V →G ult(V ,G ) is a generic ultrapower with S ∈ G , then
R remains stationary in ult(V ,G ).

I not necessarily in V [G ]
I note: cr(j) = ω2

The last characterization can be generalized (i.e. there is some
normal filter F extending the club filter such that whenever U is a
V -normal ultrafilter extending F , R remains stationary in
ult(V ,U).)
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The Diagonal Reflection Principle (DRP)

Definition
(C.) Let Z be a class of ω1-sized sets (e.g. Z = IAω1 or Z = ICω1).
DRP(θ,Z ) means that there are stationarily many M ≺ H(θω)+

such that:

I M ∩ Hθ ∈ Z

I R reflects to M for every stationary R ⊂ [Hθ]ω which is an
element of M.

For the rest of the talk, we fix Z = ICω1 and omit reference to it.
DRP means DRP(θ) holds for all regular θ ≥ ω2.
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Characterizations of DRP

Theorem
TFAE:

1. DRP(θ)

2. There are stationarily many M such that NS � [M ∩ Hθ]ω

condenses correctly via M.

3. There is a stationary S such that whenever
j : V →G ult(V ,G ) is a generic ultrapower with S ∈ G , then
all stationary subsets of [Hθ]ω from V remain stationary in
ult(V ,G )

I not necessarily in V [G ]!
I again, cr(j) = ω2

So DRP(θ) is a weaker version of the following statement:

“There is an ideal I such that (I +,⊂) is a proper forcing.”
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Proper ideal forcings and well-determined generic
embeddings with critical point ω2

Suppose I is an ideal over ℘ω2(Hθ) such that (I +,⊂) is proper; it
is known this implies I is precipitous. Let j : V →G ult(V ,G ) be
generic ultrapower; note cr(j) = ω2. Let θ̃ := sup(j“θ).

Let ~S partition θ ∩ cof(ω) into θ stationary sets, and assume
j(~S) ∈ V . Then j � θ ∈ V .

I Because j“θ = {η < j(θ) | j(~S)η reflects at θ̃}; this is
primarily because:

I properness of I + implies for every i < θ, Si remains stationary
in ult(V ,G ) and so j“Si is stationary there as well (note
j � Hθ ∈ ult(V ,G )).



Proper ideal forcings and well-determined generic
embeddings with critical point ω2

Suppose I is an ideal over ℘ω2(Hθ) such that (I +,⊂) is proper; it
is known this implies I is precipitous. Let j : V →G ult(V ,G ) be
generic ultrapower; note cr(j) = ω2. Let θ̃ := sup(j“θ).

Let ~S partition θ ∩ cof(ω) into θ stationary sets, and assume
j(~S) ∈ V . Then j � θ ∈ V .

I Because j“θ = {η < j(θ) | j(~S)η reflects at θ̃}; this is
primarily because:

I properness of I + implies for every i < θ, Si remains stationary
in ult(V ,G ) and so j“Si is stationary there as well (note
j � Hθ ∈ ult(V ,G )).



DRP and well-determined generic embeddings with critical
point ω2

Aside from assuming j(~S) ∈ V and some degree of precipitousness,
the points from the previous slide used only very weak
consequences of “(I +,⊂) is proper.”

In particular, minor variations of DRP can be used instead of the
“(I +,⊂) is proper” assumption.

I And variations of DRP follow from MM (later).



Chang ideals and DRP

(maybe skip)...



Forcing Axioms and “Plus” versions

Definition
MA+α(P) means for every ω1-sized collection D of dense sets and
every α-sequence S = 〈Ṡi | i < α〉 of P-names of stationary
subsets of ω1, there is a filter F which:

I meets every set in D

I evaluates each name in S as a stationary set (i.e.
(Ṡi )F := {β < ω1 | (∃q ∈ F )(q  β̌ ∈ Ṡi )} is stationary for
each i < α).

MA+α(Γ) means MA+α(P) holds for every P ∈ Γ.

I MA+(Γ) means MA+1(Γ).

I What I’m calling MA+ω1(Γ) appears sometimes in the
literature as MA++(Γ) (and in Baumgartner’s original article
as just one “plus”...)
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Forcing Axioms and reflection

Theorem
(Baumgartner) MA+ω1(σ-closed posets) implies that for every
regular θ ≥ ω2, every ω1-sized collection of stationary subsets of
θ ∩ cof(ω) have a common reflection point of cofinality ω1.

I Even for just θ = ω3 the consistency strength of this kind of
reflection is not known, but requires at least measurable
cardinals of high Mitchell order.

Theorem
(Foreman-Magidor-Shelah): MM implies every stationary
R ⊂ [Hθ]ω reflects to stationarily many sets in IAω1 .



Forcing Axioms and DRP

Theorem
(C.) Assume MA+ω1(σ-closed posets). Then DRP(θ) holds for
every regular θ ≥ ω2.

Theorem
(C.) Assume MM. Then wDRP(θ) holds for every regular θ ≥ ω2.
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A nice characterization of forcing axioms

Theorem
(Woodin) TFAE for any separative poset P (here θ >> |P|):

1. MA(P)

2. SP is stationary, where SP := {M ≺ Hθ | ω1 ⊂
M and (∃g)(g is an (M,P)-generic filter)}

(similiar version for MA+α(P))

I In particular, if say PFA holds then for every proper P there is
a normal filter FP concentrating on SP.

I (Shelah) However in ZFC there are proper P, Q such that
SP ∩ SQ is nonstationary.
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MA(Γ) and ideals whose associated posets are in Γ

QUESTION: Is MA(Γ) consistent with the existence of ideals such
that (I +,⊂) ∈ Γ?

It is well-known that in V Col(ω1,<κ) where κ is supercompact:

I MA+ω1(σ-closed) holds

I There are filters F on ℘ω2(Hθ) such that (F +,⊂) is equivalent
to a σ-closed forcing.

But also:

Theorem
(C.) It is consistent with a superhuge cardinal that PFA holds and
for each proper P there is a normal filter FP concentrating on SP
such that (F +

P ,⊂) is a proper forcing.
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When (I +,⊂) completely embeds into another ideal forcing

By the Woodin characterization of MA(Γ), if MA(Γ) holds and I is
an ideal such that (I +,⊂) ∈ Γ, then (I +,⊂) completely embeds
into another ideal forcing.

I namely, into the poset for NS � S(I+,⊂)

It is natural to ask if this complete embedding can be the same as
the “lifting” map in the Rudin-Keisler sense.

Partial positive answer: there is a model of PFA starting from a
super-2-huge cardinal, where there are I , J where both (I +,⊂) and
(J+,⊂) are proper, I is the projection of J in the Rudin-Keisler
sense, and this projection is also a forcing projection.

(I don’t know if we can arrange that J is the NS ideal...)
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Proof: PFA+ω1 (just MA+ω1(σ-closed)) implies DRP(θ).

Q := continuous countable chains of models from H(θω)+ , ordered
by end-extension.

Let G ⊂ Q be generic and 〈NG
α | α < ω1〉 the generic object. Note

that in V [G ]: |HV
(θω)+ | = ω1.

Let 〈Ṙα | α < ω1〉 be a name for enumeration of all stationary
subsets of [θ]ω from the ground model.

Ṡα := indices of the models in Ṙα.

Each Ṡα names a stationary subset of ω1 (b/c Q is σ-closed so the
set named by Ṙα remains stationary).
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proof, cont.

Let SQ ⊂ ℘ω2(H(θω)+) be the stationary set from the
characterization of MA+ω1 .

So for every M ∈ SQ: ω1 ⊂ M and there is a g which is
(M,Q)-generic such that (Ṡα)g is stationary for every α < ω1.

Fix such an M and g .

Note ~Ng witnesses that a large initial segment of M is internally
approachable. (density argument)

Let R ∈ M be a stationary subset of [Hθ]ω. Then R = Ṙg
α for

some α.

So R ∩ [M]ω contains the models in the generic chain indexed by
Sg
α .
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MM implies wDRP

Sketch: (forcing and proof rely heavily on Foreman’s paper):
Conditions of the form 〈f (β),Nβ | β ≤ δ〉 where (fix some
maximal antichain 〈Tα | α < ω1〉 which is pairwise disjoint):

1. δ < ω1

2. ~N continuous ∈-chain

3. f : δ + 1→ Hθ+

4. For every β < δ:
I If f (β) is a stationary subset of θ ∩ cof(ω), then for all limit
β′ ∈ (β, δ] ∩ Tβ require that sup(Nβ′ ∩ θ) ∈ f (β).



outline of proof

I DR := {(f , ~N)|R ∈ range(f )} is dense

I Dα := {q ∈ Q|α < δq} is dense for each α < ω1

I stationary set preservation

Then let SQ be the stationary set of M ∈ ℘ω2(Hθ+) for which a
generic exists.

I Every R ∈ M is of the form f gM (β) some β < ω1

I So the points in the generic chain indexed by Tβ (above β)
witness that R reflects to sup(M ∩ θ).
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Final remarks

Corollary

Strong forcing axioms imply there are generic embeddings which
weakly resemble generic embeddings by proper ideal forcings.

Similar ideas can use MM+ω1 to form a kind of product of certain
s.s.p. forcings.
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Final remarks

Assume MM and that for each stationary set preserving P there is
a precipitous ideal whose dual concentrates on SP.

I What more can we say about these generic embeddings?

I e.g. when P is the s.s.p. poset from above used to show MM
implies diagonal reflection?


