Diagonal stationary reflection and generic ultrapowers

Sean Cox Institut für Mathematische Logik und Grundlagenforschung Universität Münster wwwmath.uni-muenster.de/logik/Personen/Cox

> MAMLS 2011, Harvard February 19, 2011

Strong forcing axioms (MM, PFA) imply the existence of ideals with interesting generic ultrapowers; these generic ultrapowers have critical point ω_2 .

Strong forcing axioms (MM, PFA) imply the existence of ideals with interesting generic ultrapowers; these generic ultrapowers have critical point ω_2 .

Vaguely: For sufficiently large classes Γ of posets, $MA(\Gamma)$ implies there are ideals I whose positive-set forcings are "almost" in Γ .

The (duals of the) ideals will concentrate on $M \in \wp_{\omega_2}(H_\theta)$ which have condensation-like properties.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

The (duals of the) ideals will concentrate on $M \in \wp_{\omega_2}(H_\theta)$ which have condensation-like properties.

Gödel's Condensation Lemma for L: whenever $M \prec (H_{\theta}, \in)$, if $\sigma_M : H_M \to H_{\theta}$ is the inverse of Mostowski Collapse of M then for every $\alpha \in H_M \cap ORD$: $(L_{\alpha})^{H_M} = L_{\alpha}$.

So the function $\alpha \mapsto L_{\alpha}$ condenses on M.

Motivation: Two condensation-like principles under strong forcing axioms

Strong forcing axioms imply condensation-like properties:

- (Viale-Weiss) Proper Forcing Axiom implies ISP
- (Foreman) Martin's Maximum implies highly simultaneous ("diagonal") stationary set reflection

Motivation: A condensation principle under PFA

Theorem

(Viale/Weiss): Assume PFA and fix regular $\Omega >> \theta \ge \omega_2$. There are stationarily many $M \in \wp_{\omega_2}(H_\Omega)$ such that whenever $N \mapsto F(N) \subset N$ is a slender function on $\wp_{\omega_2}(H_\theta)$ and $F \in M$, then M "catches" F.

Motivation: A condensation principle under PFA

Theorem

(Viale/Weiss): Assume PFA and fix regular $\Omega >> \theta \ge \omega_2$. There are stationarily many $M \in \wp_{\omega_2}(H_\Omega)$ such that whenever $N \mapsto F(N) \subset N$ is a slender function on $\wp_{\omega_2}(H_\theta)$ and $F \in M$, then M "catches" F.

• i.e. if $\sigma : \overline{M} \to M$ is inverse of trans. collapse and $Y := F(M \cap H_{\theta})$, then σ^{-1} " $Y \subset \overline{M}$ is an element of \overline{M}

▶ So *M* detects a lot of 2nd order information about itself.

Motivation: A condensation principle under MM

Theorem

(Foreman): Assume MM and suppose $\theta \subset H \subseteq H_{\theta}$ where $|H| = \theta$. Fix a partition $\langle R_i | i \in H \rangle$ of $\theta \cap cof(\omega)$ into stationary sets.

Then there are stationarily many (internally approachable) $M \in \wp_{\omega_2}(H)$ such that:

$$R_i$$
 reflects to $\sup(M \cap \theta) \iff i \in M$ (1)

Motivation: A condensation principle under MM

Theorem

(Foreman): Assume MM and suppose $\theta \subset H \subseteq H_{\theta}$ where $|H| = \theta$. Fix a partition $\langle R_i \mid i \in H \rangle$ of $\theta \cap cof(\omega)$ into stationary sets.

Then there are stationarily many (internally approachable) $M \in \wp_{\omega_2}(H)$ such that:

$$R_i$$
 reflects to $\sup(M \cap \theta) \iff i \in M$ (1)

- ▶ This implies: if $\sigma : \overline{M} \to M$ is inverse of collapse map, then \overline{M} is correct about stationarity of every $\sigma^{-1}(R_i)$ (for $R_i \in M$ from the fixed partition).
- ► Again, *M* detects some 2nd order information.

Outline

- Notation and background
- Stationary set reflection and connections with:
 - Condensation of NS
 - Generic embeddings with critical point ω_2
- The Diagonal Reflection Principle (DRP)
- Forcing axioms imply DRP
 - And a detour involving MA(Γ) and ideals whose positive-set-forcings are in Γ

Notation and background

▶
$$\wp_{\kappa}(H_{\theta}) := \{M \prec H_{\theta} \mid |M| < \kappa \text{ and } M \cap \kappa \in \kappa\}$$

IA_{ω1} is the class of *M* such that there is some ∈-increasing, continuous elementary chain ⟨N_α | α < ω₁⟩ of countable elementary submodels of *M* such that

$$\blacktriangleright \bigcup_{\alpha < \omega_1} N_\alpha = M$$

- Every proper initial segment of \vec{N} is element of M
- IC_{ω1} defined similarly, except only require each N_α ∈ M (equiv: M ∩ [M]^ω contains a club)

Notation and background

▶
$$\wp_{\kappa}(H_{\theta}) := \{M \prec H_{\theta} \mid |M| < \kappa \text{ and } M \cap \kappa \in \kappa\}$$

IA_{ω1} is the class of *M* such that there is some ∈-increasing, continuous elementary chain ⟨N_α | α < ω₁⟩ of countable elementary submodels of *M* such that

$$\blacktriangleright \bigcup_{\alpha < \omega_1} N_\alpha = M$$

- Every proper initial segment of \vec{N} is element of M
- IC_{ω1} defined similarly, except only require each N_α ∈ M (equiv: M ∩ [M]^ω contains a club)

This talk focuses on $\wp_{\omega_2}(H_\theta) \cap \mathsf{IC}_{\omega_1}$.

Stationary set reflection

Definition

A set S reflects at γ iff $S \cap \gamma$ is stationary in γ . A set $S \subset \kappa$ reflects iff there is a $\gamma < \kappa$ s.t. S reflects at γ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Stationary set reflection

Definition

A set S reflects at γ iff $S \cap \gamma$ is stationary in γ . A set $S \subset \kappa$ reflects iff there is a $\gamma < \kappa$ s.t. S reflects at γ .

If κ is measurable (or just weakly compact), then:

- every stationary subset of κ reflects.
- V^{Col(ω₁,<κ)} ⊨ "every stationary subset of ω₂ ∩ cof(ω) reflects"
 - The quoted statement is equiconsistent with a Mahlo cardinal (Harrington/Shelah)

Simultaneous stationary reflection

We can also require distinct sets to have a common reflection point. If κ is measurable, then:

- Every < κ-sized collection of stationary sets have a common reflection point
- V^{Col(ω₁,<κ)} ⊨ "every ω₁-sized collection of stationary subsets of ω₂ ∩ cof(ω) have a common reflection point"
 - The quoted statement is equiconsistent with a weakly compact cardinal (Magidor)

Generalized stationary reflection

For stationary $R \subset [H_{\theta}]^{\omega}$, say R reflects to M iff $R \cap [M]^{\omega}$ is stationary in $[M]^{\omega}$.

▶ i.e. for every algebra A on M, there is an $N \in R$ with $N \prec A$.

Generalized stationary reflection

For stationary $R \subset [H_{\theta}]^{\omega}$, say R reflects to M iff $R \cap [M]^{\omega}$ is stationary in $[M]^{\omega}$.

▶ i.e. for every algebra A on M, there is an $N \in R$ with $N \prec A$.

"For every regular $\theta \ge \omega_2$, every stationary $R \subset [\theta]^{\omega}$ reflects to an M of size ω_1 ":

- has powerful consequences if θ is large, e.g. failure of square, NS_{ω1} is precipitous and more (F-M-S)
- follows from MM (Foreman-Magidor-Shelah)
- holds in $V^{Col(\omega_1, <\kappa)}$ where κ is supercompact

Stationary reflection and condensation of NS

"R reflects to M" is equivalent to saying that the transitive collapse of M is *correct* about the stationarity of the preimage of R. (assuming M is sufficiently approachable)

Stationary reflection and condensation of NS

"R reflects to M" is equivalent to saying that the transitive collapse of M is *correct* about the stationarity of the preimage of R. (assuming M is sufficiently approachable)

Proof: (\implies): Suppose $R \in M$ reflects to M. Let $\sigma : \overline{H} \to M$ and $\sigma(\overline{R}) = R$. So $\overline{H} \models$ " \overline{R} is stationary."

NTS: \overline{R} is really stationary.

- ▶ In V let $\bar{\mathcal{A}} = (\bar{H}, (\bar{f}_n)_{n \in \omega})$
- Need to find a $\bar{N} \prec \bar{\mathcal{A}}$ s.t. $\bar{N} \in \bar{R}$
- Use σ to transfer \overline{A} to a structure $A = (M \cap H_{\theta}, (f_n)_n)$.
- Since R ∩ [M]^ω is stationary and M ∩ [M]^ω contains a club (this is the approachability requirement on M), there is an N ∈ R ∩ M ∩ [M]^ω such that N ≺ A.
- Then $\sigma^{-1}(N) \in \overline{R}$ and $\sigma^{-1}(N) \prec \overline{A}$.

Other characterizations, and generic ultrapowers

Let $R \subset [H_{\theta}]^{\omega}$ be stationary, and $Z := \{M \prec H_{\Omega} \mid M \cap H_{\theta} \in \mathsf{IC}_{\omega_1}\}$ (where $\Omega >> \theta$; note Z is stationary). TFAE:

- 1. *R* reflects to stationarily many $M \in Z$.
- 2. There are stationarily many $M \in Z$ such that R condenses correctly on M;
- 3. There is a stationary $S \subset Z$ such that whenever $j: V \to_G ult(V, G)$ is a generic ultrapower with $S \in G$, then R remains stationary in ult(V, G).

- not necessarily in V[G]
- note: $cr(j) = \omega_2$

Other characterizations, and generic ultrapowers

Let $R \subset [H_{\theta}]^{\omega}$ be stationary, and $Z := \{M \prec H_{\Omega} \mid M \cap H_{\theta} \in \mathsf{IC}_{\omega_1}\}$ (where $\Omega >> \theta$; note Z is stationary). TFAE:

- 1. R reflects to stationarily many $M \in Z$.
- 2. There are stationarily many $M \in Z$ such that R condenses correctly on M;
- 3. There is a stationary $S \subset Z$ such that whenever $j: V \to_G ult(V, G)$ is a generic ultrapower with $S \in G$, then R remains stationary in ult(V, G).
 - not necessarily in V[G]
 - note: $cr(j) = \omega_2$

The last characterization can be generalized (i.e. there is some normal filter F extending the club filter such that whenever U is a V-normal ultrafilter extending F, R remains stationary in ult(V, U).)

The Diagonal Reflection Principle (DRP)

Definition

(C.) Let Z be a class of ω_1 -sized sets (e.g. $Z = IA_{\omega_1}$ or $Z = IC_{\omega_1}$). $DRP(\theta, Z)$ means that there are stationarily many $M \prec H_{(\theta^{\omega})^+}$ such that:

- $M \cap H_{\theta} \in Z$
- R reflects to *M* for every stationary *R* ⊂ [*H*_θ]^ω which is an element of *M*.

The Diagonal Reflection Principle (DRP)

Definition

(C.) Let Z be a class of ω_1 -sized sets (e.g. $Z = IA_{\omega_1}$ or $Z = IC_{\omega_1}$). $DRP(\theta, Z)$ means that there are stationarily many $M \prec H_{(\theta^{\omega})^+}$ such that:

- $M \cap H_{\theta} \in Z$
- R reflects to *M* for every stationary *R* ⊂ [*H*_θ]^ω which is an element of *M*.

For the rest of the talk, we fix $Z = IC_{\omega_1}$ and omit reference to it. DRP means $DRP(\theta)$ holds for all regular $\theta \ge \omega_2$.

Characterizations of DRP

Theorem TFAE:

- 1. $DRP(\theta)$
- 2. There are stationarily many M such that $NS \upharpoonright [M \cap H_{\theta}]^{\omega}$ condenses correctly via M.
- 3. There is a stationary S such that whenever $j: V \rightarrow_G ult(V, G)$ is a generic ultrapower with $S \in G$, then all stationary subsets of $[H_{\theta}]^{\omega}$ from V remain stationary in ult(V, G)

- not necessarily in V[G]!
- again, $cr(j) = \omega_2$

Characterizations of DRP

Theorem TFAE:

- 1. $DRP(\theta)$
- 2. There are stationarily many M such that $NS \upharpoonright [M \cap H_{\theta}]^{\omega}$ condenses correctly via M.
- 3. There is a stationary S such that whenever $j: V \rightarrow_G ult(V, G)$ is a generic ultrapower with $S \in G$, then all stationary subsets of $[H_{\theta}]^{\omega}$ from V remain stationary in ult(V, G)
 - not necessarily in V[G]!
 - again, $cr(j) = \omega_2$

So $DRP(\theta)$ is a weaker version of the following statement:

"There is an ideal I such that (I^+, \subset) is a proper forcing."

Proper ideal forcings and well-determined generic embeddings with critical point ω_2

Suppose *I* is an ideal over $\wp_{\omega_2}(H_\theta)$ such that (I^+, \subset) is proper; it is known this implies *I* is precipitous. Let $j : V \to_G ult(V, G)$ be generic ultrapower; note $cr(j) = \omega_2$. Let $\tilde{\theta} := sup(j^{"}\theta)$.

Let \vec{S} partition $\theta \cap cof(\omega)$ into θ stationary sets, and assume $j(\vec{S}) \in V$. Then $j \upharpoonright \theta \in V$.

Proper ideal forcings and well-determined generic embeddings with critical point ω_2

Suppose *I* is an ideal over $\wp_{\omega_2}(H_\theta)$ such that (I^+, \subset) is proper; it is known this implies *I* is precipitous. Let $j : V \to_G ult(V, G)$ be generic ultrapower; note $cr(j) = \omega_2$. Let $\tilde{\theta} := sup(j^{"}\theta)$.

Let \vec{S} partition $\theta \cap \operatorname{cof}(\omega)$ into θ stationary sets, and assume $j(\vec{S}) \in V$. Then $j \upharpoonright \theta \in V$.

- Because j"θ = {η < j(θ) | j(S)_η reflects at θ̃}; this is primarily because:
 - Properness of I⁺ implies for every i < θ, S_i remains stationary in ult(V, G) and so j "S_i is stationary there as well (note j ↾ H_θ ∈ ult(V, G)).

DRP and well-determined generic embeddings with critical point $\omega_{\rm 2}$

Aside from assuming $j(\vec{S}) \in V$ and some degree of precipitousness, the points from the previous slide used only very weak consequences of " (I^+, \subset) is proper."

In particular, minor variations of DRP can be used instead of the " (I^+, \subset) is proper" assumption.

And variations of DRP follow from MM (later).

Chang ideals and DRP

(maybe skip)...

Forcing Axioms and "Plus" versions

Definition

 $MA^{+\alpha}(\mathbb{P})$ means for every ω_1 -sized collection \mathcal{D} of dense sets and every α -sequence $\mathcal{S} = \langle \dot{S}_i \mid i < \alpha \rangle$ of \mathbb{P} -names of stationary subsets of ω_1 , there is a filter F which:

- meets every set in \mathcal{D}
- evaluates each name in S as a stationary set (i.e. (S_i)_F := {β < ω₁ | (∃q ∈ F)(q ⊩ β̃ ∈ S_i)} is stationary for each i < α).

 $MA^{+\alpha}(\Gamma)$ means $MA^{+\alpha}(\mathbb{P})$ holds for every $\mathbb{P} \in \Gamma$.

Forcing Axioms and "Plus" versions

Definition

 $MA^{+\alpha}(\mathbb{P})$ means for every ω_1 -sized collection \mathcal{D} of dense sets and every α -sequence $\mathcal{S} = \langle \dot{S}_i \mid i < \alpha \rangle$ of \mathbb{P} -names of stationary subsets of ω_1 , there is a filter F which:

- meets every set in \mathcal{D}
- evaluates each name in S as a stationary set (i.e. (S_i)_F := {β < ω₁ | (∃q ∈ F)(q ⊩ β̃ ∈ S_i)} is stationary for each i < α).

 $MA^{+\alpha}(\Gamma)$ means $MA^{+\alpha}(\mathbb{P})$ holds for every $\mathbb{P} \in \Gamma$.

• $MA^+(\Gamma)$ means $MA^{+1}(\Gamma)$.

 What I'm calling MA^{+ω1}(Γ) appears sometimes in the literature as MA⁺⁺(Γ) (and in Baumgartner's original article as just one "plus"...)

Forcing Axioms and reflection

Theorem

(Baumgartner) $MA^{+\omega_1}(\sigma\text{-closed posets})$ implies that for every regular $\theta \ge \omega_2$, every ω_1 -sized collection of stationary subsets of $\theta \cap cof(\omega)$ have a common reflection point of cofinality ω_1 .

Even for just θ = ω₃ the consistency strength of this kind of reflection is not known, but requires at least measurable cardinals of high Mitchell order.

Theorem

(Foreman-Magidor-Shelah): MM implies every stationary $R \subset [H_{\theta}]^{\omega}$ reflects to stationarily many sets in IA_{ω_1} .

Forcing Axioms and DRP

Theorem

(C.) Assume $MA^{+\omega_1}(\sigma\text{-closed posets})$. Then $DRP(\theta)$ holds for every regular $\theta \geq \omega_2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Forcing Axioms and DRP

Theorem

(C.) Assume $MA^{+\omega_1}(\sigma\text{-closed posets})$. Then $DRP(\theta)$ holds for every regular $\theta \geq \omega_2$.

Theorem

(C.) Assume MM. Then wDRP(θ) holds for every regular $\theta \geq \omega_2$.

A nice characterization of forcing axioms

Theorem (Woodin) TFAE for any separative poset \mathbb{P} (here $\theta >> |\mathbb{P}|$):

- 1. $MA(\mathbb{P})$
- 2. $S_{\mathbb{P}}$ is stationary, where $S_{\mathbb{P}} := \{ M \prec H_{\theta} \mid \omega_1 \subset M \text{ and } (\exists g)(g \text{ is an } (M, \mathbb{P})\text{-generic filter}) \}$

(similiar version for $MA^{+\alpha}(\mathbb{P})$)

A nice characterization of forcing axioms

Theorem

(Woodin) TFAE for any separative poset \mathbb{P} (here $\theta >> |\mathbb{P}|$):

- 1. $MA(\mathbb{P})$
- 2. $S_{\mathbb{P}}$ is stationary, where $S_{\mathbb{P}} := \{M \prec H_{\theta} \mid \omega_1 \subset M \text{ and } (\exists g)(g \text{ is an } (M, \mathbb{P})\text{-generic filter})\}$

(similiar version for $MA^{+\alpha}(\mathbb{P})$)

In particular, if say PFA holds then for every proper ℙ there is a normal filter F_ℙ concentrating on S_ℙ.

▶ (Shelah) However in ZFC there are proper \mathbb{P} , \mathbb{Q} such that $S_{\mathbb{P}} \cap S_{\mathbb{Q}}$ is nonstationary.

 $MA(\Gamma)$ and ideals whose associated posets are in Γ

QUESTION: Is $MA(\Gamma)$ consistent with the existence of ideals such that $(I^+, \subset) \in \Gamma$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $MA(\Gamma)$ and ideals whose associated posets are in Γ

QUESTION: Is $MA(\Gamma)$ consistent with the existence of ideals such that $(I^+, \subset) \in \Gamma$?

It is well-known that in $V^{Col(\omega_1,<\kappa)}$ where κ is supercompact:

- $MA^{+\omega_1}(\sigma\text{-closed})$ holds
- There are filters F on ℘_{ω2}(H_θ) such that (F⁺, ⊂) is equivalent to a σ-closed forcing.

 $MA(\Gamma)$ and ideals whose associated posets are in Γ

QUESTION: Is $MA(\Gamma)$ consistent with the existence of ideals such that $(I^+, \subset) \in \Gamma$?

It is well-known that in $V^{Col(\omega_1,<\kappa)}$ where κ is supercompact:

- $MA^{+\omega_1}(\sigma\text{-closed})$ holds
- There are filters F on ℘_{ω₂}(H_θ) such that (F⁺, ⊂) is equivalent to a σ-closed forcing.

But also:

Theorem

(C.) It is consistent with a superhuge cardinal that PFA holds and for each proper \mathbb{P} there is a normal filter $F_{\mathbb{P}}$ concentrating on $S_{\mathbb{P}}$ such that $(F_{\mathbb{P}}^+, \subset)$ is a proper forcing.

When (I^+, \subset) completely embeds into another ideal forcing

By the Woodin characterization of $MA(\Gamma)$, if $MA(\Gamma)$ holds and I is an ideal such that $(I^+, \subset) \in \Gamma$, then (I^+, \subset) completely embeds into another ideal forcing.

▶ namely, into the poset for $NS \upharpoonright S_{(I^+, \subset)}$

It is natural to ask if this complete embedding can be the same as the "lifting" map in the Rudin-Keisler sense.

When (I^+, \subset) completely embeds into another ideal forcing

By the Woodin characterization of $MA(\Gamma)$, if $MA(\Gamma)$ holds and I is an ideal such that $(I^+, \subset) \in \Gamma$, then (I^+, \subset) completely embeds into another ideal forcing.

▶ namely, into the poset for $NS \upharpoonright S_{(I^+, \subset)}$

It is natural to ask if this complete embedding can be the same as the "lifting" map in the Rudin-Keisler sense.

Partial positive answer: there is a model of PFA starting from a super-2-huge cardinal, where there are I, J where both (I^+, \subset) and (J^+, \subset) are proper, I is the projection of J in the Rudin-Keisler sense, and this projection is also a *forcing* projection.

(I don't know if we can arrange that J is the NS ideal...)

Proof: *PFA*^{+ ω_1} (just *MA*^{+ ω_1 (σ -closed)) implies *DRP*(θ).}

 $\mathbb{Q}:=$ continuous countable chains of models from $H_{(\theta^\omega)^+},$ ordered by end-extension.

Let $G \subset \mathbb{Q}$ be generic and $\langle N_{\alpha}^{G} \mid \alpha < \omega_1 \rangle$ the generic object. Note that in V[G]: $|H_{(\theta^{\omega})^+}^V| = \omega_1$.

Let $\langle \dot{R}_{\alpha} \mid \alpha < \omega_1 \rangle$ be a name for enumeration of all stationary subsets of $[\theta]^{\omega}$ from the ground model.

 $\dot{S}_{lpha}:=$ indices of the models in $\dot{R}_{lpha}.$

Proof: *PFA*^{+ ω_1} (just *MA*^{+ ω_1 (σ -closed)) implies *DRP*(θ).}

 $\mathbb{Q}:=$ continuous countable chains of models from $H_{(\theta^\omega)^+},$ ordered by end-extension.

Let $G \subset \mathbb{Q}$ be generic and $\langle N_{\alpha}^{G} \mid \alpha < \omega_1 \rangle$ the generic object. Note that in V[G]: $|H_{(\theta^{\omega})^+}^V| = \omega_1$.

Let $\langle \dot{R}_{\alpha} \mid \alpha < \omega_1 \rangle$ be a name for enumeration of all stationary subsets of $[\theta]^{\omega}$ from the ground model.

 $\dot{S}_{lpha}:=$ indices of the models in $\dot{R}_{lpha}.$

Each \dot{S}_{α} names a stationary subset of ω_1 (b/c \mathbb{Q} is σ -closed so the set named by \dot{R}_{α} remains stationary).

proof, cont.

Let $S_{\mathbb{Q}} \subset \wp_{\omega_2}(H_{(\theta^{\omega})^+})$ be the stationary set from the characterization of $MA^{+\omega_1}$.

So for every $M \in S_{\mathbb{Q}}$: $\omega_1 \subset M$ and there is a g which is (M, \mathbb{Q}) -generic such that $(\dot{S}_{\alpha})_g$ is stationary for every $\alpha < \omega_1$.

proof, cont.

Let $S_{\mathbb{Q}} \subset \wp_{\omega_2}(H_{(\theta^{\omega})^+})$ be the stationary set from the characterization of $MA^{+\omega_1}$.

So for every $M \in S_{\mathbb{Q}}$: $\omega_1 \subset M$ and there is a g which is (M, \mathbb{Q}) -generic such that $(\dot{S}_{\alpha})_g$ is stationary for every $\alpha < \omega_1$.

Fix such an M and g.

Note \vec{N}^g witnesses that a large initial segment of M is internally approachable. (density argument)

Let $R \in M$ be a stationary subset of $[H_{\theta}]^{\omega}$. Then $R = \dot{R}_{\alpha}^{g}$ for some α .

So $R \cap [M]^{\omega}$ contains the models in the generic chain indexed by S^{g}_{α} .

Sketch: (forcing and proof rely heavily on Foreman's paper): Conditions of the form $\langle f(\beta), N_{\beta} | \beta \leq \delta \rangle$ where (fix some maximal antichain $\langle T_{\alpha} | \alpha < \omega_1 \rangle$ which is pairwise disjoint):

- 1. $\delta < \omega_1$
- 2. \vec{N} continuous \in -chain
- 3. $f: \delta + 1 \rightarrow H_{\theta^+}$
- 4. For every $\beta < \delta$:
 - If $f(\beta)$ is a stationary subset of $\theta \cap cof(\omega)$, then for all limit $\beta' \in (\beta, \delta] \cap T_{\beta}$ require that $sup(N_{\beta'} \cap \theta) \in f(\beta)$.

outline of proof

- $D_R := \{(f, \vec{N}) | R \in range(f)\}$ is dense
- $D_{\alpha} := \{ q \in \mathbb{Q} | \alpha < \delta^q \}$ is dense for each $\alpha < \omega_1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

stationary set preservation

outline of proof

•
$$D_R := \{(f, \vec{N}) | R \in \operatorname{range}(f)\}$$
 is dense

• $D_{\alpha} := \{ q \in \mathbb{Q} | \alpha < \delta^q \}$ is dense for each $\alpha < \omega_1$

stationary set preservation

Then let $S_{\mathbb{Q}}$ be the stationary set of $M \in \wp_{\omega_2}(H_{\theta^+})$ for which a generic exists.

- Every $R \in M$ is of the form $f^{g_M}(\beta)$ some $\beta < \omega_1$
- So the points in the generic chain indexed by T_β (above β) witness that R reflects to sup(M ∩ θ).

Final remarks

Corollary

Strong forcing axioms imply there are generic embeddings which weakly resemble generic embeddings by proper ideal forcings.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Final remarks

Corollary

Strong forcing axioms imply there are generic embeddings which weakly resemble generic embeddings by proper ideal forcings.

Similar ideas can use $MM^{+\omega_1}$ to form a kind of product of certain s.s.p. forcings.

Assume MM and that for each stationary set preserving \mathbb{P} there is a precipitous ideal whose dual concentrates on $S_{\mathbb{P}}$.

- What more can we say about these generic embeddings?
- ► e.g. when P is the s.s.p. poset from above used to show MM implies diagonal reflection?