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@ Godel [1931] defined his diagonal Klasse K.

e This is the NM? complement of our familiar £9 class K, which
first defined by Kleene in 1936.

e Kleene showed K is c.e. and noncomputable.

@ Kleene-Post [1954] defined the jump: A’ = KA

A’ is c.e. in and above A.

All sets and degrees are c.e.



Definition
Ly={d|d =07}

Hy = {d|d =0"}.

Definition

L= {d|d™ = 0™}
H, = {d | d — o(n+1)}

@ Sacks proved the Jump Inversion Theorem, which led to
the following corollary:

0:LOQL1nggL3g...,and

0=HyCH CHoCHs...




c.e. sets




@ Myhill [1956] studied the lattice £ of c.e. sets under
inclusion.

° 5 = {{ We}eew U7 ﬂ, W, (Z)}
o We define £ = £/F, where F = {W, |W, finite}.



Definition

A set Ais maximal if A* is a coatom of £*, i.e. if for all e,

AcW, — We="A or We="w.

@ Myhill asked if there exists a maximal set.

@ Friedberg [1958]: There exists a maximal set; £* is not
dense.

@ Sacks [1964]: There is an incomplete maximal set.

@ Yates [1965]: There is a complete maximal set.

Theorem (Martin, 1966)
H; = the degrees of maximal sets.




@ Definability has played a major role in the field, for the
structures D, R, and €£.

@ Shore and Slaman [1999] wrote: “The overarching goal of
these [many years of] investigations has been the
definition of the (Turing) jump operator”.

Definition
We say a class of degrees C is definable if
C = {deg(W) | W € S} where S is a class of sets definable

in €.

Which jump classes of degrees are definable in £? l




Definition
A set A is atomless if it is not contained in any maximal set.

@ Lachlan [1968]: The atomless sets are contained in the
class Lo.

@ Shoenfield [1976]: Every degree in L, contains an
atomless set.

@ Thus, L, = {deg(A) | A atomless}.



Which Jump Classes are Definable?

Red = Definable Blue = Not definable
@ Lo= {0}: Definable by {deg(0)}.
@ [y={d|d > 0}: Definable by {deg(W) | W ¢ &}.

@ Hp= {0'}: Definable because the creative sets are
definable [Harrington, 1986].

o Hi={d|d' = 0"}: Definable by {deg(W) | W maximal} by
Martin.

@ L,={d|d” > 0"}: Definable by {deg(W) | W atomless}
by Lachlan and Shoenfield.



Definition

A class of sets S C £ is invariant if it is closed under Aut(&). A
class of degrees C is invariant if C = {deg(W) | W € S}, where
S is invariant.

@ Definable classes are invariant.
@ To show a class is not definable, we show it is noninvariant.

@ For the c.e. degrees R, we don’t know any nontrivial
automorphisms.



Definition

A c.e. set Ais prompt if there is an enumeration {As} of Aand a
computable function p such that for all s, p(s) > s, and for all e,

We infinite = (3x) (35) [X € We, s & Asl X # Aps)l X].

Theorem (Harrington-Soare, 1996)

For all prompt sets A, there exists B =1 0’ such that A ~ B.

@ Cholak, Downey, and Stob [1992] showed this for promptly
simple sets.

@ There is a low prompt degree. Hence, every set in that
degree is automorphic to a complete set.

@ Thus, the downward closed jump classes {Ln}n~0 and
{Hn}n>0 are noninvariant, and thus not definable.






Upward Closed Jump Classes

Theorem (Cholak-Harrington, 2002)

Forn> 2, H,, and L,, are definable.

Corollary (Lachlan-Shoenfield)

L, is definable.

@ Nies, Shore, and Slaman showed that in the c.e. degrees
(R,<7), Hh and L, are all definable except possibly L.



Red = Definable
Upward Closed

nonlow, high,

Blue = Not definable

Downward Closed

Ly H;
[ Ho
L3 Hs

low, nonhigh,

L Hy
Ly H,
Ls Hs

@ The only remaining class is L;.
@ For the c.e. degrees R, the definability of L is unknown.

Conjecture (Harrington-Soare, 1996)

Ly is noninvariant.




Theorem (Epstein)

L4 is noninvariant, and thus not definable.

Red = Definable Blue = Not definable
Upward Closed

nonlow, high,

Ly H;
Ly Ho
Ly Hs



Theorem (Epstein)

There exists a nonlow D such that for all A <t D, there exists a
low set B such that A ~ B.

Corollary (Epstein)
The nonlow degrees are noninvariant, and thus not definable.

Proof: Let d = deg(D). Then d is an L; degree such that all
sets in d are automorphic to low sets.

@ D must be L.

@ We will focus on a single set A = WP,
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Building an automorphism

@ Given an enumeration {U,}ne,, Of the c.e. sets, where
Uy = A

@ Build an enumeration {Un}n@ of the c.e. sets. Let B = U.

@ We build U, so that © : U, — U, is an automorphism.






=

=

20



-7

L-7

21



Recall:

Theorem (Harrington-Soare, 1996)
For all prompt sets A, there exists B =1 0’ such that A~ B

To achieve K <t B, as n enters K, enumerate I, into B.
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Theorem (Cholak 1995, Harrington-Soare 1996)

Every noncomputable c.e. set is automorphic to a high set.

These theorems move sets up in degree. We move sets down.

@ The Harrington-Soare machinery is inflexible.

@ |t does not allow us to restrain elements from falling into A.

29



@ We must build an automorphism taking A <t D down to a
low set B.

@ We restrain B to make it low, so we must also restrain A.

@ This is the first automorphism theorem that uses restraint.

@ We divide the theorem into two phases because we need
two sets of machinery.

24
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Phase 1

A

Phase 2

28



Definition
Let E(X) = {Wen X| We € £}

Theorem (Soare, 1982)
For all coinfinite low B, £(B) = £.

Thus, to make A automorphic to B low, we must have £(A) = £.
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Phase 2: £(A) = £(B)

@ Elements enter the Phase 2 when they enter A or B.
@ They may already be enumerated into U, or U;
e Difficulty: U, N A finite, U, N B infinite.

@ We can't let Phase 1 do anything it wants.
Bad situation:

A B

Um Un

20




@ The states that have infinitely many elements enter into
them as they enter A or B are the gateway states.

@ We make the gateway states equal

>
os]}

Phase 1

A B

Phase 2




@ Summary of automorphism construction:

e Phase 1: Ensure £(A) = £(B), while matching gateway
states, and

e Phase 2: Ensure £(A) = £(B).

@ We extend the map ©' : £(A) — £(B) to an automorphism
© of £.
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Building D

@ There are infinitary positive requirements to make D
nonlow.

@ We also restrain D to keep elements in A.

@ This causes conflict between the positive and negative
requirements on D.

24



@ We can build automorphisms on a tree of strategies.

@ We use one tree to keep track of positive and
automorphism requirements.

@ Negative requirements are built in to automorphism nodes.

True
path —

125
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B - tree

A - tree
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Conclusion

L, is the only upward closed jump class that is not definable.

Upward Closed Downward Closed

nonlow, high, low, nonhigh,
Ly H; L, Hy
[ Ho Lo H,

L3 Hs L3 Hs
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Open Questions

@ For all L, degrees a, does there exists A € a such that A is
automorphic to a low set?

@ For all c.e. sets A < 0’ and noncomputable c.e. sets C, is A
automorphic to a c.e. set B, C £t B? Whatif Ais L,?
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