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Gödel [1931] defined his diagonal Klasse K .

This is the Π0
1 complement of our familiar Σ0

1 class K , which
first defined by Kleene in 1936.

Kleene showed K is c.e. and noncomputable.

Kleene-Post [1954] defined the jump: A′ = K A

A′ is c.e. in and above A.

All sets and degrees are c.e.
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Definition
L1 = {d | d′ = 0′}.

H1 = {d | d′ = 0′′}.

Definition

Ln = {d | d(n) = 0(n)}

Hn = {d | d(n) = 0(n+1)}

Sacks proved the Jump Inversion Theorem, which led to
the following corollary:

Corollary
0 = L0 ( L1 ( L2 ( L3 ( . . ., and

0′ = H0 ( H1 ( H2 ( H3 . . .
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Myhill [1956] studied the lattice E of c.e. sets under
inclusion.

E = {{We}e∈ω,∪,∩, ω, ∅}

We define E∗ = E/F , where F = {We |We finite}.
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Definition
A set A is maximal if A∗ is a coatom of E∗, i.e. if for all e,

A ⊂We =⇒ We =∗ A or We =∗ ω.

Myhill asked if there exists a maximal set.

Friedberg [1958]: There exists a maximal set; E∗ is not
dense.

Sacks [1964]: There is an incomplete maximal set.

Yates [1965]: There is a complete maximal set.

Theorem (Martin, 1966)
H1 = the degrees of maximal sets.
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Definability has played a major role in the field, for the
structures D, R, and E .

Shore and Slaman [1999] wrote: “The overarching goal of
these [many years of] investigations has been the
definition of the (Turing) jump operator”.

Definition
We say a class of degrees C is definable if
C = {deg(W ) |W ∈ S} where S is a class of sets definable
in E .

Question
Which jump classes of degrees are definable in E?
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Definition
A set A is atomless if it is not contained in any maximal set.

Lachlan [1968]: The atomless sets are contained in the
class L2.

Shoenfield [1976]: Every degree in L2 contains an
atomless set.

Thus, L2 = {deg(A) | A atomless}.
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Which Jump Classes are Definable?

Red = Definable Blue = Not definable

L0= {0}: Definable by {deg(∅)}.

L0= {d | d > 0}: Definable by {deg(W ) |W /∈ E}.

H0= {0′}: Definable because the creative sets are
definable [Harrington, 1986].

H1= {d | d′ = 0′′}: Definable by {deg(W ) |W maximal} by
Martin.

L2= {d | d′′ > 0′′}: Definable by {deg(W ) |W atomless}
by Lachlan and Shoenfield.
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Definition
A class of sets S ⊆ E is invariant if it is closed under Aut(E). A
class of degrees C is invariant if C = {deg(W ) |W ∈ S}, where
S is invariant.

Definable classes are invariant.

To show a class is not definable, we show it is noninvariant.

For the c.e. degrees R, we don’t know any nontrivial
automorphisms.
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Definition
A c.e. set A is prompt if there is an enumeration {As} of A and a
computable function p such that for all s, p(s) ≥ s, and for all e,

We infinite =⇒ (∃x) (∃s) [x ∈We, at s & As�x 6= Ap(s)�x ].

Theorem (Harrington-Soare, 1996)

For all prompt sets A, there exists B ≡T 0′ such that A ' B.

Cholak, Downey, and Stob [1992] showed this for promptly
simple sets.

There is a low prompt degree. Hence, every set in that
degree is automorphic to a complete set.

Thus, the downward closed jump classes {Ln}n>0 and
{Hn}n≥0 are noninvariant, and thus not definable.
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Upward Closed Jump Classes

Theorem (Cholak-Harrington, 2002)

For n ≥ 2, Hn and Ln are definable.

Corollary (Lachlan-Shoenfield)

L2 is definable.

Nies, Shore, and Slaman showed that in the c.e. degrees
(R, <T ), Hn and Ln are all definable except possibly L1.
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Red = Definable Blue = Not definable

Upward Closed Downward Closed

nonlown highn lown nonhighn

L1 H1 L1 H1

L2 H2 L2 H2

L3 H3 L3 H3

...
...

...
...

The only remaining class is L1.
For the c.e. degrees R, the definability of L1 is unknown.

Conjecture (Harrington-Soare, 1996)

L1 is noninvariant.
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Theorem (Epstein)

L1 is noninvariant, and thus not definable.

Red = Definable Blue = Not definable

Upward Closed

nonlown highn

L1 H1

L2 H2

L3 H3

...
...
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Theorem (Epstein)
There exists a nonlow D such that for all A ≤T D, there exists a
low set B such that A ' B.

Corollary (Epstein)
The nonlow degrees are noninvariant, and thus not definable.

Proof: Let d = deg(D). Then d is an L1 degree such that all
sets in d are automorphic to low sets.

D must be L2.

We will focus on a single set A = ΨD.
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Building an automorphism

Given an enumeration {Un}n∈ω of the c.e. sets, where
U0 = A.

Build an enumeration {Ûn}n∈ω of the c.e. sets. Let B = Û0.

We build Ûn so that Θ : Un 7→ Ûn is an automorphism.
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Recall:

Theorem (Harrington-Soare, 1996)

For all prompt sets A, there exists B ≡T 0′ such that A ' B

To achieve K ≤T B, as n enters K , enumerate Γn into B.
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Theorem (Cholak 1995, Harrington-Soare 1996)
Every noncomputable c.e. set is automorphic to a high set.

These theorems move sets up in degree. We move sets down.

The Harrington-Soare machinery is inflexible.

It does not allow us to restrain elements from falling into A.
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We must build an automorphism taking A ≤T D down to a
low set B.

We restrain B to make it low, so we must also restrain A.

This is the first automorphism theorem that uses restraint.

We divide the theorem into two phases because we need
two sets of machinery.
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Phase 1

Definition
Let E(X ) = {We ∩ X |We ∈ E}

Theorem (Soare, 1982)

For all coinfinite low B, E(B) ∼= E .

Thus, to make A automorphic to B low, we must have E(A) ∼= E .
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Phase 2: E(A) ∼= E(B)

Elements enter the Phase 2 when they enter A or B.

They may already be enumerated into Un or Ûn.

Difficulty: Un ∩ A finite, Ûn ∩ B infinite.

We can’t let Phase 1 do anything it wants.
Bad situation:
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The states that have infinitely many elements enter into
them as they enter A or B are the gateway states.

We make the gateway states equal
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Summary of automorphism construction:

Phase 1: Ensure E(A) ∼= E(B), while matching gateway
states, and

Phase 2: Ensure E(A) ∼= E(B).

We extend the map Θ′ : E(A)→ E(B) to an automorphism
Θ of E .
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Building D

There are infinitary positive requirements to make D
nonlow.

We also restrain D to keep elements in A.

This causes conflict between the positive and negative
requirements on D.
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We can build automorphisms on a tree of strategies.

We use one tree to keep track of positive and
automorphism requirements.

Negative requirements are built in to automorphism nodes.
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Conclusion

L1 is the only upward closed jump class that is not definable.

Upward Closed Downward Closed

nonlown highn lown nonhighn

L1 H1 L1 H1

L2 H2 L2 H2

L3 H3 L3 H3

...
...

...
...
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Open Questions

For all L2 degrees a, does there exists A ∈ a such that A is
automorphic to a low set?

For all c.e. sets A < 0′ and noncomputable c.e. sets C, is A
automorphic to a c.e. set B, C 6≤T B? What if A is L2?
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Thank you for listening.

41


