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1. The shock of of independence

The proof of independence of the Continuum Hypothesis by Paul
Cohen in 1963 and the avalanche of additional independence results
was the trigger to a very intensive discourse about the future of Set
Theory and its foundational role in Mathematics. It will be only fair
to say that while the invention of forcing initiated the blooming of Set
Theory as a technical mathematical discipline, it had a shocking effect
on the perception of Set Theory as the framework in which all of Math-
ematics (or at least a major part of it) can be formalized.The prevailing
tone of these reactions is that Set Theory (at least as formalized by the
Zermelo-Fraenkel axioms, denoted by ZFC) lost its uniqueness.What
made the shock even more dramatic was the fact the proof of the in-
dependence of the Continuum Hypothesis showed that ZFC gives us
very little information about the size of the Continuum and as far as
the axioms are concerned there is a huge range of possibilities like

2ℵ0 = ℵ1, 2ℵ0 = ℵ2 . . . 2ℵ0 = ℵ211086 . . . 2ℵ0 = ℵω+172
ℵ0 = ℵω1

. Here are two quotes from many:

Such results show that axiomatic Set Theory is hope-
lessly incomplete. . . If there are a multitude of set the-
ories then none of them can claim the central place in
Mathematics. (Mostowski-1967 [29])

Beyond classical analysis there is an infinity of differ-
ent mathematics and for the time being no definitive
reason compels us to chose one rather than another.
(Dieudonné-1976 [?])1

This shock is somewhat puzzling because the fact that ZFC is not
complete and therefore contains some independent statements was well
known in view of Gödel’s incompleteness theorems. Gödel himself in
the early version of [15] is confident that CH is independent of ZFC.

1I do not know what Dieudonné means by Classical Analysis , but any reasonable
attempt to delineate ”Classical Analysis” will also run into independent statements.
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But some how the mathematical community at large believed that
”real” Mathematics is immune from independence and the problems
mathematicians are really interested in are not of the kind of ”esoteric”
”artificial” independent statements produced by the proof of Gödel’s
incompleteness theorem.

A typical reaction of a certain mathematical community when one
of its central problems was shown to be independent is to try and
ostracize the offending problem by labeling it as ”ill defined” ”vague
” etc. An example of this attitude is the reaction to Shelah’s proof
of the independence of Whitehead’s problem where a problem that
seems natural and well defined was suddenly declared to be the wrong
problem.2 I find this kind of reaction somewhat intellectually dishonest.

The central issue of the discussions thus far in this series of talks
was pluralism versus uniqueness or at least selectivity in Set Theory.
Should we accept multitude of set theories, each one with its own pecu-
liar set of axioms or should there be one or small number of canonical
Set Theories which are preferable to others and which provide a reason-
able level of completeness by deciding a substantial class of otherwise
independent problems? If we opt for the non pluralist option, how
do we choose the ”right” or the ”preferable” Set Theory? (Note that
asking for the ”right” Set Theory” is different question than asking for
the preferable Set Theory.) Is this choice relevant at all to the working
mathematician? In this talk I’ll try to argue for anti pluralist position .
I’ll try to claim that the choice of the underlying Set Theory is relevant
to the mathematical work and that we can develop insights and criteria
which will lead us in the process of finding the right or the preferable
assumptions for Set Theory. This process can well lead us to finding the
preferable answer to central independent problems like the Continuum
Hypothesis. The non pluralist position was argued very convincingly
here in this series by Woodin and by Koellner , (in [21],[42]).Our argu-
ments will be somewhat different. Woodin and Koellner were mainly
relying on arguments which under the classification initiated by Gödel
[15] can labeled as intrinsic arguments. We shall give stronger weight
to extrinsic arguments,namely relating to the impact and the connec-
tion of Set Theory with other fields of mathematics and the natural
sciences. This is natural for us since we are close to the Naturalism of
Maddy [23],[24],[25]).

2My favorite statement of Whitehead problem is that ”A compact Abelian path-
wise connected topological group is a product of copies of the unit circle”. One can
feel the feeling of surprise, even shock, for the language of the anonymous author
of the Wikipedia article on ”h”
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2. Should we accept multitude of set theories?

An extreme pluralistic position was presented in this series by Hamkins
([17] who argued for the multiverse view of Set Theory.Namely when we
talk about sets we are not talking about a fixed universe of sets in which
for instance CH is either true or false but we envision simultaneously
diverse concepts of sets or a multitude of universes which may have
some relations like one being a forcing extension of another.Hamkins
makes a strong analogy between Set Theory and Geometry: in the
same sense that there is a multitude of geometries that are all legiti-
mate objects of study for the geometer who is committed to classifying
and finding all the sorts of geometries that are available , so the set
theorist should study the different possible set universes that coexists
in the multiverse.Geometry is not unique in this sense, the group the-
orist domain contain many different groups:Abelian and non Abelian,
free and non free etc. And there is nothing troubling about the fact
that many natural statements in group theory are ”independent” in the
sense that there are groups that satisfy the given statement and there
are groups that violate the given statement. Why should Set Theory
be different?

I think that the answer lies in the Mathematical goal of the subject.
Studying different possible models of ZFC is a great fun and definitely
has mathematical interest , not unlike classifying possible groups. But
the main motivation of studying Set Theory is still its foundational
role: creating a framework in which all of Mathematics (or at least a
major part of it) can be included under a uniform system. Of course the
Number Theorists does not think about numbers as sets , the algebraist
does not think about groups as sets and the analyst does not think on
real valued functions as sets, still the fact that the numbers , groups
and real valued functions can be construed to be members of the same
universe, obeying the same rules is the most important reason d’etre of
Set Theory. So in some sense deciding about the universe of Set Theory
in which we assume we live is like deciding on the rules of the game for
Mathematics. It is no coincidence that Dieudonné in the quote above
is bothered by having infinitely many possible mathematics , not by
infinitely many possible groups or geometries. The specter of having
multitude of set theories , hence a multitude systems of mathematical
rules of the game , is as troubling as imagining a city with different set
of traffic rules for every street.

Let us accept for the sake of argument that the truth value of different
set theoretical statements are all relevant to particular problem of group
theory . (We shall argue in the next section that this is a definite
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possibility ). Now our group theorist when she states the theorem she
proved she will have to specify, on top of the assumptions about the
group , the set theoretical universe in which the action takes place. To
a limited extent it is already being done when mathematicians state
theorems by using CH or Martin’s Axiom (MA) but if in the course
of time (like we believe will happen) more set theoretical methods will
be used more and more the exact set theoretical assumptions used will
become additional burden on mathematical communication.My guess is
that the Mathematical community can tolerate a limited small number
of set theories but will find it awkward to choose the appropriate set
theoretical assumptions from a long list of possible universes or theories.
It is up to the Set Theorists to sort out the different possibilities and to
pick the Set Theory or the small number of set theories which will be
more fruitful or ”truer”. If we continue Hamkins’ analogy to Geometry:
the main goal of the set theorists is not exactly like the goal of the pure
geometer whose goal is to study all possible geometries but it closer to
the goal of the geometer that together with the physicists try to pick
the geometry which is most appropriate for describing the physical
space.To some extent the relation between the set theorist and the the
rest of the mathematical community is like the relation between the
geometer and the physicist.

The reader of this article may have noticed that I avoided any at-
tempt to to argue against pluralism in Set Theory by using ontological
arguments, like ”realism in ontology” or ”realism in truth values” in
the sense of Shapiro[36].Like many working Mathematicians I am basi-
cally a realist of and I do believe in some kind of objective existence of
mathematical concepts, but I also believe that one can follow a rational
process of finding the favored Set Theory (which for a realist like me
will be the ”correct set theory”) without making any firm ontological
commitments. I am sympathetic the argument of Maddy in [25] that
by her terminology, the difference between the thin realist and arealist
does not reflect on the the methodology in which they will analyse the
practice of Set Theory.

Of course one can argue, like Feferman in his talk in this series and
elsewhere [8],[9] that ”higher” Set Theory is irrelevant to the Mathe-
matical practice (or the particular choice of axioms) and anyway most
of the Mathematics being done today can be done in some weak con-
structive system. We shall try to deal with this argument in the next
section .
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3. Does it Matter?

If the main mathematical goal of Set Theory is to provide founda-
tional framework for Mathematics then the claim that all or most of
the mathematical practice can be formulated in a much weaker system
is a challenge to the relevance of the effort to find extensions of ZFC
that will decide many of the otherwise undecidable problems. If there
is no chance that the working Mathematician will use any thing more
that a tiny fragment of ZFC then it seems futile to try and decide on
the right extension of ZFC.My counter argument to this claim is that
even if it true that 99% of the mathematics done today can be done
within a subsystem of ZFC it does not mean that it will be stay like
that for ever. There are many cases in Mathematics that methods and
tools that were never considered to be relevant to a particular class of
problems were suddenly recognized as essential for solving them. There
are cases in which it took decades before the realization of the fruitful-
ness of the ”external” tools . (A typical case is the use of group theory
in number theory.). There are parts of mathematics which obviously
use substantial segment of the power of ZFC and these subjects did
run into independent problems. (The Whitehead problem in the the-
ory of Abelian groups is a typical case) . But since it is common to
label a field of mathematics that faces independent problems as being
essentially ”set theoretical” we shall concentrate on ”down to earth”
fields like number theory or analysis.

Formally , in view of the incompleteness theorem , we know that
there are very simple problems of number theory or analysis can not
be decided in ZFC. One can hear the claim that the real problems
that are on the agenda of the working mathematicians will be never be
of this kind. I find it very hard to accept . In some sense this claim is
kin to feeling before the discovery of forcing that natural problem like
CH is not independent.

Consider for instance the open problems in number theory like the
twin numbers problem (which is a Π0

1 statement) , the Goldbach con-
jecture and the P 6= NP (both are Π0

2 statements).There does not seem
to be any formal criteria that will differentiate between these problems
and the independent problems produced by the proof of the incom-
pleteness theorem. Similarly the statement of Borel determinacy looks
very similar to statements studied by analysts. (In fact the study of
Borel determinacy was initiated by non set theorists). The claim that
the basic problems studied by number theorists or analysts will never
turn out to be independent assumes that the practicing mathemati-
cians has some mysterious intuition that saves them from spending
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their efforts on independent problems . I find it hard to believe, so I
believe that sooner ar later the working number theorists will formu-
late as problems that they will consider to be well defined and natural
but are independent of ZFC.Feferman in [9] argues that supposing
that additional set theoretic assumptions will prove a Π0

2 statement
not provable otherwise then the statement follow from the 1-CON of
the extended theory and it is really the assumption made (similarly for
more complicated number theoretic statement , if it is proved from a
certain theory , containing PA, then it follows from the ω consistency
of the theory.)3.This is true but as Steel argues in his section of [9] this
is in way dodging the issue because typically the way to justify the
number theoretic statement ”The theory we consider is 1-CON” is to
derive it from the extension of ZFC which presumably was not picked
arbitrarily but following some justification along the lines that we ex-
plore in the next sections.This objection to the potential use of higher
set theoretical methods to settle problems of number theory is even
less effective when you consider problems of analysis . The problems
of the structure of Projective sets like their Lebesgue measurability or
Projective Determinacy looks so much like genuine analytic problems
, that it is difficult to assume that the working analyst will ,in the
course of his studies,avoid running into similar problems that require
additional axioms to be settled.

Even if a particular problem can be solved in principle in a weaker
system, it is many times the case that the first time the proof is discov-
ered or the more natural and simpler proof is discovered in a stronger
system. An illustrative case is the story of Wiles proof of Fermat last
theorem. The original proof used Grothendieck’s universes , hence for-
mally it assumed the existence of inaccessible cardinals. As everybody
expected they can be eliminated but the point is that Wiles constructed
his proof it came naturally for him to make the assumption that for-
mally moved him away from ZFC. The interesting twist is that when
I talked to several number theorists about the project of getting the
proof in a weaker system like ZFC or PA they were not interested!
The assumption of the existence of Grothendieck’s universes (hence
the assumption of the existence of unboundedly many inaccessible car-
dinals) seems to them such a natural extension of ZFC that having a
proof of this Π0

1 statement in this theory looks like good enough ground
for believing the truth of the theorem and an attempt to eliminate the

31-CON of a theory is the statement that the set of the Σ0
1 of the theory is

consistent.
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use of the stronger axioms looks to them like an unnecessary logicians’
finicking.

There are other examples like Martin’s proof of Borel Determinacy
which initially was inferred from his proof of analytic determinacy using
measurable cardinals and the Wadge Borel determinacy , which looks
like any genuine statement studied by analysts, which was proved orig-
inally from Borel determinacy, hence used ZFC in a strong way but
was later proved in second order arithmetic.

In summary I think that it is very likely that the working mathe-
matician will run into problems that the only way to settle them will
be by expanding the usual axiom system of Set Theory. And the math-
ematical community will accept such a solution as legitimate if the set
theoretical principles used will be accepted as part of a canonical widely
accepted system of axioms.

We , as set theorists , face the problem of how to choose among the
multitude of possible set theories those that will be mathematically
fruitful,and acceptable in the long run. The next sections will chart
some of the considerations that can lead us in this process.

4. The search for new axioms

We are going to present several criteria or principles that should
serve as guidance in the search for new axioms. These are rather in-
formal principles which leave a large leeway in their interpretation in a
particular case.We see the search for new axioms as a ongoing process
, not dissimilar to the process in other fields of science , by which a sci-
entific theory is crystalized by a sequence of trials and errors, where at
any particular moment there may be several competing options. The
criteria of testing a particular axiom or a set of axioms is very likely
very different form those used in Science but there are similarities. The
famous quote from Gödel [15] is very appropriate introduction to the
process we envision.

. . . Even disregarding the intrinsic necessity of some new
axiom. . . a probable decision about its proof is possi-
ble also . . . by studying its success. Success here means
fruitfulness in consequences. . . There might exist axioms
so abundant in their verifiable consequences, shedding
so much light upon a whole field and yielding such pow-
erful methods for solving problems . . . that, no matter
whether or not they are intrinsically necessary, they
would have to be accepted at least in the same sense
as any well-established physical theory
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Feferman in [8] makes the clear distinction between structural axioms
whose role is to organize and expose a body of mathematical work and
there is a great freedom in their formation and foundational axioms
which are very basic to the concepts studied. For the later he quotes
as a requirement the definition of the word ”axiom” from the Oxford
English dictionary

A self-evident proposition requiring no formal demon-
stration to prove its truth, but received and assented to
as soon as mentioned.

We think that this is too restrictive because the process by which an
axiom is accepted as a fundamental and natural maybe a long process
of reflection. The axiom can be foundational but still not ”received and
assented to as soon as mentioned”. I guess that any axiomatization of
Quantum Mechanics will start from the axiom that the set of states of a
physical system is the set of one dimensional subspaces of Hilbert space.
This is universally accepted by physicists but it had to go through a
long process before being ”received and assented”. Still we believe that
an axiom in order to be adapted has to conform the concept under
study. So we put it rather vaguely that

The new axiom should have intuitive or philosophical
appeal. It should conform to some mental image of the
basic concepts of Set Theory.

Some semi-serious way of phrasing this principle is that a good axiom
needs a good slogan in order to be adapted. Of course the intuitive
mental images are not always a reliable guide to fruitfulness or truth
but on the other hand we should not underestimate them as important
source for insights on the basic concepts.

Independence was the motivating force for introducing new axioms
therefore it is natural that we shall expect that

The new axiom should be strong enough to decide a
large class of statements which are undecidable on the
basis of the axioms adapted so far.

When the axiom decides a class of problems we would prefer that it
gives a coherent structure to these problems.

The Axiom should produce a coherent elegant theory
for some important class of problems.

A well known example of interplay of the last two principles is the
the decision between PD and V = L. Both them provides a very rich
structure theory of the projective sets of reals but where the structure
of the projective sets given by PD is much more elegant and coherent
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than the structure given by V = L. When PD was suggested for the
first time I think that it lacked somewhat as far as the first principle :
of fitting some intuitive mental image of the universe of sets. But the
work of Martin-Steel and Woodin which derived PD and stronger de-
terminacy statements from large cardinals increased its intuitive appeal
substantially .

The next principle is along the lines of the passage form Gödel quoted
above.

To the extent possible the axiom should have testable
verifiable consequences.

Here we have to explain what do we mean by ”testable verifiable”
consequences. We are not talking about experimental science so the
”verification” is a mathematical verification. So for instance if the
axiom has some new Π1

0 consequences for number theory then the fact
that so far we did not get a counter example is a verifying fact. (Of
course this could change with time but this is not different than any
scientific theory.) An evidence for the axiom could be a result that we
intuitively believe that it is true and we were not able to derive without
the new axiom. I think that it is even possible that axioms could be
tested by their impact on fields outside of mathematics like physics. It
may sound like an outrageous speculation and admittedly we do not
have any concrete example of such a possible impact , but in the next
section we shall give an example where the set theory we use may have
some relevance to the mathematical environment in which a physical
theory is embedded.

The standard way in which we generate different set theories is by
forcing . The forcing extensions of a given universe of ZFC can have
properties which are very different from the properties of the original
universe. But some properties are resilient under forcing extensions.
(We are talking about set forcing. As shown by Jensen followed by S.
Friedman and others that using class forcing we can make dramatic
changes to the properties and the structure of the ground universe.
) For instance if 0# exists in the ground model it still exists in any
generic extensions. If the ground model has a proper class of one of
the standard large cardinals notions then a set forcing extension does
not change this fact. A very remarkable generic absoluteness result is
the result of Woodin showing that the theory of L[R] is absolute under
forcing set forcing extensions, provided the universe contains a proper
class of Woodin cardinals. While we agree with Foreman in [13] that
the generic absoluteness can not by itself be an argument for adapting a
new axiom, we still think that having resilient axioms is a very desirable
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property , so if we consider different axioms that could be supported
by the previous principles, then having generic absoluteness provides
additional appeal to the axiom.

If possible the axiom should be resilient under forcing
extensions.

5. Can Set Theory be relevant to Physics?

In the previous section we presented the process of search for new ax-
ioms which is not dissimilar to the formation of theories in any branch
of science. Can we carry this analogy even further and the decide be-
tween different set theories on the basis on their scientific consequences,
say in Physics?

As to be expected we do not have any definite case in which different
set theories have an impact on physical theories but we believe that
the possibility that may happen in the future is not as outrageous as
it may sounds . Here are two examples which relates to basic issues in
Quantum Mechanics. Two famous arguments against hidden variable
interpretation of Quantum Mechanics are the Bell Inequalities ([4]. See
also [38]) and the Kochen-Specker Theorem. ([19]).

Bell inequalities imply for instance that for spin 1
2

particles , the
correlation which is observed between the measurements of the spin
of two entangled particles along different axis can not realized by a
function that assigns to any direction in space a definite value which is
the value of the spin along the given direction. (We identify directions
in space with points on the the two dimensional unit sphere S2. ) .
A natural requirements form the function (which does not exist!) is
that if will be measurable with respect to the usual measure on S2.
Pitowsky in a series of papers ([32],[33],[34]) showed that if one allows
a larger class of functions then one can have a deterministic model
realizing correlations which violates the Bell inequalities . (The class
of functions Pitowsky considered were still nice enough so that we can
still talk about integration, correlation etc. ) But in order to show
that a spin function realizing the Quantum Mechanical statistics he
assumed CH or MA (Martin’s axiom). The use of additional axioms
is necessary in view of the following result:

Theorem 5.1 (Farah,M.[7]). If the continuum is real valued measur-
able then Pitowski’s kind spin function does not exists. The same holds
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in the model one gets from any universe of ZFC by adding (2ℵ0)+ ran-
dom reals. 4

Similar situation exists with respect to the Kochen-Specker theorem.
It deals with spin 1 particle. It follows from Quantum Mechanics that
for such a particle and given three mutually orthogonal directions in
space ~X, ~Y , ~Z , while one can not measure simultaneously the value
of the spin along this three axis ,(The corresponding operators do not
commute), one can still measure simultaneously the absolute value of
the spin along the three given axis and then the three values we get
are always two 1’s and one 0’s. The Kochen Specker theorem claims
that such behavior can not be realized by a deterministic function. i.e.
there is no function F on S2 which gets the values 0, 1 which satisfy
the conditions:

(1) For all ~X ∈ S2 F (− ~X) = F ( ~X)

(2) For every triple of mutually orthogonal vectors in S2: ~X, ~Y , ~Z

F ( ~X) + F (~Y ) + F (~Z) = 2.

(The theorem is really a finitary statements and hence there are no
restriction on the function F ).Call such a function A KS function.

Pitowsky in [34] suggested relaxing the requirements above on the
function F so that clause (2) is assumed to hold almost always in the

following sense : For a fixed vector ~X ∈ S2 the set of ~Y such that if ~Z
the a vector orthogonal to ~X and ~Y then F ( ~X) + F (~Y ) + F (~Z) 6= 2
is of measure 0 with respect to the usual measure on the great circle
perpendicular to ~X. As before Pitowsky shows that under Martin’s
axiom MA there does exists a function on S2 satisfying the modified
requirements. Call such a function a PKS function. Similarly to the
last theorem we are able to prove

Theorem 5.2 (Farah,M.). If the continuum is real valued measurable
then there is no PKS function on S2 does not exists.The same holds in
the model one gets from any universe of ZFC by adding (2ℵ0)+ random
reals.

The functions that Pitowsky constructs above are not measurable
and so probably will rejected as having physical meaning in the same
sense that the partition of the sphere given by the Banach-Tarski para-
dox lacks physical meaning , but the Pitowski functions are not as
pathological and there is some variation of measure theory in which
these functions are rather well behaving. As Pitowsky says in [32]:

4Shipman in [39] announced that the same conclusion is consistent with ZFC.
We were not able to reconstruct his arguments neither directly nor after corre-
sponding with him).
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. . . We can conceive of mathematical situations where
natural concept of probability emerges which is not cap-
tured by the usual axioms of probability theory.What I
have in mind is not a radical extension of probability
. . . but rather a conservative extension. . .

We can envision a development in physical theories which will encom-
pass a larger class of functions than accepted today as legitimate func-
tions. So it will not be a complete absurdity to ask whether a function
satisfying the Pitowsky condition exists. So Physics could be poten-
tially partial to the set theoretic context in which its mathematical
modeling is takeing place.

While being a wild speculation it is not impossible that Scientific
Theories will prefer one set theory over others because it makes the
scientific theory simpler and more elegant. It may even be possible
that in order to derive certain experimentally testable results one would
have to prefer one set theory over others. I am not claiming that it is
likely to have an experimental test that will decide between different
Set Theories but that we will be able to compare between different
Set Theories according to what type of mathematical hinterland they
provide for theoretical Physics. I believe that it is possible.

6. Some paths to follow

In previous section we described several criteria for evaluating poten-
tial extensions of ZFC , hopefully leading to the preferable set theory
that will decide many of the outstanding independent problems. A
well known success story that meets our criteria is the series of strong
axioms of infinity.They definitely fit an appealing mental image of the
universe of set theory going into larger and larger levels. Many of
these axioms can be justified as reflection principles. (We mean reflec-
tion principles in somewhat different sense than Koellner in [20] , so
his negative result there does not apply) .

Definition 6.1. Given a property of structures in a fixed signature
such that the property is invariant under isomorphism of structures. A
reflection cardinal for the given property is a cardinal κ such that every
structure in the given signature has a substructure of cardinality less
than κ having the property.

For instance if the property is first order then ℵ1 is a reflection cardi-
nal for the property.(This is of course the Löwenheim-Skolem theorem.)
The existence of a supercompact cardinal is equivalent to the existence
of a reflection cardinal for every property which is expressible in second
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order logic. The ultimate reflection principle is the assumption that
every property of structures has a reflection cardinal and it is equiva-
lent to well known Vopenka’s principles which implies the existence of
unboundedly many extendible cardinals.5 My favorite slogan for this
principle is that the universe of sets is so large that every proper class
of structures of the same signature must contain repetitions in some
sense.

The large cardinals axioms are success story because they decided a
substantial class of undecided statements, the most noteworthy class
is the theory of L[R] which contains the theory of projective sets and
it provides a very elegant and coherent theory . In the presence of the
large cardinals this theory is resilient under forcing extensions. As far
as verifiable consequences I consider the fact that these axioms provides
new Π0

1 sentences which so far were not refuted. In some sense we can
consider these Π0

1 sentences as physical facts about the world that so
far are confirmed by experience .Unfortunately they do not decide some
central independent problems like the Continuum Hypothesis. In this
section we shall study three potential paths of extending ZFC and
shedding light on the Continuum Problem. In view of the success of
strong axioms of infinity we take for granted that any extensions of
ZFC that is considered, is compatible with the standard axioms of
strong infinity.

We shall consider three directions in which ZFC can be extended
and which shed light on the possible values of the continuum. These
directions involve unproved conjectures so the decision about their ef-
ficacy will have to wait further development. This is not unusual in
any scientific discipline that we have some promising theories, some
of them competing and the decision about them is delayed till further
evidence is available.

6.1. The Ultimate L. The mental image for any L like model (”canon-
ical inner model”) is that the the universe of sets is constructed by a
sequence of stages where each stage is obtained from the previous stage
by an operation which is definable in a very canonical way. ”canoni-
cal ” here is rather vague but for instance if each stage is the power
set of the previous stage , like in the definition of the Vα’s , then it
is not ”canonical” enough . We can too easily change the meaning
of this operation , for instance by forcing. On the other hand taking
the next stage as the definable subsets of the previous stage , like in
the definition of the the Lα’s is very canonical.The definition that is
being used in the definition of the inner models for the large cardinals

5This is essentially an unpublished result of Stavi. See also [40]
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constructed thus far, where at each stage you throw in some rather
canonical objects like the minimal (partial) extender missing on the
sequence constructed thus far seems to fit the intuitive picture of being
canonical.

The obvious example for such a L like universe is L it self. It has the
advantage of deciding most of the interesting independent problems.
The disadvantage of L is that the direction it decides the independent
problems is usually in the less elegant and coherent direction. In some
sense ”L is the paradise of counter examples”. In view of our decision
of adapting any of the reasonable large cardinals axioms , L should be
dropped as an option because it rules out rather mild axioms of strong
infinity.

The alternative is to adapt some inner models for large cardinals,
where the slogan for justifying it is that if while we may want larger
and larger cardinals to exist in our universe, we want only sets that are
necessary in some sense. (Given all the ordinals.) .The most appealing
inner model is the ”Ultimate L” suggested by Woodin. ([45]) which is
supposed to be a the canonical inner model for supercompact cardinal,
but it has the pleasant feature that it catches stronger cardinals , if
they happen to exist. The construction of the ultimate L is still a work
in progress and if successful then the axiom ”V=Ultimate L” maybe a
very strong competitor for the set theory that decides CH (It decides
CH in the positive direction) but I have my doubts for several reasons.

It is very likely that the Ultimate L, like the old L, will satisfy many
of the combinatorial principles like ♦ω1 . These principles are usually
the reason that ”L is the paradise of counter examples”. They allow
one to construct counter examples to many elegant conjectures . (The
Souslin Hypothesis is a famous case). In the next subsection we shall
try to suggest as intuitive principle that the universe of sets should
be as rich as you can reasonably expect. that this principle obvious
conflicts with the axiom ”V=Ultimate L”.I am going to take a greater
risk by stating a conjecture that, if true, will violate the possibility of
building the ultimate L, at least along the lines considered now.

The conjecture has to do with the absoluteness of different set the-
oretical theories under forcing extensions. As we mentioned above,
one of the most remarkable features the work done in the late 80’s on
the connection of AD with large cardinals is that in the presence of a
proper class of Woodin cardinals , the theory of L[R] is invariant under
forcing extension. In particular there is no well ordering of the reals
which is definable in L[R]. A stronger result is the following:
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Theorem 6.2 (Woodin). Assume that there is a proper class of mea-
surable Woodin cardinals and that CH holds. Let Φ be a Σ2

1 sentence.
(Namely Φ has the form ”There is a set of reals A such that Ψ(A)
holds where all the quantifies in Ψ are over reals.) Then Φ is true in
the ground model.In particular under our assumptions there is no Σ2

1

well ordering of the reals.

So the theorem claims that if CH is true (and we have the appropri-
ate large cardinals) then the Σ2

1 sentences which are are true is maximal
among all forcing extensions of our universe.Results of Abraham and
Shelah ([2],[3]) show that this result is the best possible in the sense
that for any model of set theory there is a forcing extension not adding
any reals (hence preserving CH) and introducing a Σ2

2 well ordering of
the reals. Also CH is necessary because over any model of set theory
one can introduce by forcing a Σ1

1 well ordering of the reals. Naturally
one may ask about possible generalizations of the last theorem to Σ2

2

sentences. In view of the Abraham-Shelah results one should replace
CH by a stronger statement. We make the following conjecture:

Conjecture 6.3. (Under the assumption of the appropriate large car-
dinals) Assume that the combinatorial ♦ω1 holds and let Φ be a Σ2

2

sentence, then if Φ can be made true in a forcing extension that satisfy
CH then Φ is true in ground model.In particular in the presence of
appropriate large cardinals and ♦ω1 there is no Σ2

2 well ordering of the
reals.

Namely ♦ω1 implies in the presence of strong enough large cardinals
that the set of true Σ2

2 sentences is maximal for forcing extensions sat-
isfying CH. A partial results giving some support for this conjectures
were obtained in [6]. The problem is that the present attempts for
constructing the Ultimate L , if successful, will very likely satisfy ♦ω1

and will have a Σ2
2 well ordering of the reals.So the last conjecture , if

true, will kill the possibility of constructing the Ultimate L along the
suggested lines.

6.2. Forcing Axioms. Forcing axioms like Martin’s Axiom (MA),
the Proper Forcing Axiom (PFA), Martin’s Maximum (MM) and
other variations were very successful in settling many independent
problems. The intuitive motivation for all of them is that the universe
of sets is as rich as possible, or at the slogan level

A set that its existence is possible and there is no clear
obstruction to its existence does exists

This ”slogan”is obviously very vague and each of the terms used is
problematic , but the spirit of this talk is that such vague principles
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can be a good guidance for sharpening our concepts and getting a better
and better axiom systems for Set Theory. In what sense the imagined
set is specified? As first approximation let us say that a set is simply
specified as any satisfying a certain property. So we should rephrase
our slogan as

If a set satisfying a given property is possible and there
is no clear obstruction to the existence of such set then
such set exists.

What do we mean by ”possible”? I think that a good approximation
is ”can be forced to exists” So let us try

If one can force the existence of a set satisfying a given
property and there is no clear obstruction to its existence
then such a set exists.

Still this principle is problematic. One can introduce by forcing a set
which is an enumeration of all the reals of order type ω1 but also one
can introduce by forcing a list of ω2 different reals. Of course it is
inconsistent to have sets satisfying both properties. The statement is
even more problematic if in the property one allow parameters say a
given set A. Because suppose that our parameter A is uncountable .
By using Levy’s collapse one can make A countable, so introduce a 1-1
mapping between A and ω. Obviously such a mapping does not exists
in the our universe.

I consider forcing axioms as an attempt to try and get a consis-
tent approximation to the above intuitive principle by restricting the
properties we talk about and the the forcing extensions we use. The
restriction of the forcing notions is usually following the intuition of al-
lowing only forcing notions that do not make a very dramatic change in
the universe , like making an uncountable set countable.This is some-
what similar to restricting in the interpretations of the modalities ”it
is possible that...” the set of possible universes to universes which are
not too different from the current universe.So we restrict the forcing
which we consider to ”mild” forcing extensions.

When we extend the universe by using forcing, what we add to the
universe is the generic object with respect to the forcing notion. Since
any other set introduced by the forcing notion is defined (over the
ground model) from the generic filter, our typical forcing axiom is of
the form:

For a given class of ”mild” forcing notions P and for
every forcing notion P ∈ P there is a rich family of
filters in P which are generic enough
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A more rigorous statement will be

For the given class of ”mild” forcings P , for every P ∈ P
and for every ordinal α such that P ∈ Vα there is rich
family of elementary substructures of 〈Vα, ε, P 〉 M such
that there is a M generic object for M ∩ P .

The different forcing axioms differ only in the choice of the class of
the forcing notions and the notion of ”rich” collection of elementary
substructures. Since for a countable model M we can always find a
M generic object for every forcing notion in M , the schemata above is
interesting only if we assume that there is a rich family of uncountable
M for which we can find a generic. Typically the notion of ”rich”
means that there the set of M which are elementary substructure of
Vα and for which there is a generic is stationary subset of Pκ(Vα) for
some set of cardinals κ.6

For instance the first forcing axiom was Martin’s axiom which is

Axiom 6.4 (MA). If P is a forcing notion satisfying the countable
chain condition (c.c.c) then for every α such that P ∈ Vα and for
every κ ≤ 2ℵ0 the set M ∈ Pκ(Vα) for which there is a M generic filter
for P ∩M is stationary in Pκ(Vα)).

The way we presented the axiom is trivially true under CH so if
CH holds we do not get any new interesting mathematical statement
and the same is true for other forcing axioms. So when we state any
forcing axiom we shall implicitly assume that 2ℵ0 > ℵ1 . MA which
was proved consistent by Martin and Solovay in [26] decides many
independent statements but it still leaves a lot of freedom as far as the
size of the continuum.

The next step is enlarging the class of forcing notions for which the
axiom applies so the next step was the Proper Forcing Axiom:

Axiom 6.5 (PFA). If P is a proper forcing notion (see [1] for defi-
nition.) then for every α such that P ∈ Vα and for every κ ≤ 2ℵ0 the
set M ∈ Pκ(Vα) for which there is a M generic filter for P ∩ M is
stationary in Pκ(Vα)).

This axiom was shown to be consistent relative to the consistency
of supercompact cardinal by Shelah ([37]). The next step was the
maximal possible strengthening of this axioms as far as the class of

6Pκ(Vα) is the set of all subsets of Vα of cardinality less than κ. A subset of
Pκ(Vα), S is stationary if for every enrichment of the structure 〈Vα, ε〉 by count-
ably many new relations and functions there is an elementary substructure of this
structure which is in S and whose intersection with κ is an ordinal.
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forcing notions for which the axiom applies. It is Martin Maximum
(MM) introduced by Foreman,Magidor and Shelah and shown to be
consistent relative to the existence of supercompact cardinals.([11])

Axiom 6.6 (MM). If P is a forcing notion that does not kill the
stationarity of subsets of ω1 then for every α such that P ∈ Vα and for
every κ ≤ 2ℵ0 the set M ∈ Pκ(Vα) for which there is a M generic filter
for P ∩M is stationary in Pκ(Vα)).

In [11] it was shown that now the this forcing axiom, besides de-
ciding many other independent problems, settles the size of the Con-
tinuum,namely MM implies that the 2ℵ0 = ℵ2. In particular in the
statement of the theorem the only κ for which the statement is interest-
ing is κ = ℵ2. This result was improved by Todorcevic and Velickovic
(see [41]) showing that the same conclusion follows from PFA. In fact
additional results of Moore (in [28]) get the same result from weakening
of PFA. In some sense even the tiniest strengthening of MA fixes the
continuum at ℵ2. The fascinating fact is that ℵ2 keeps appearing as a
very special cardinal.

Thus I would have loved to suggest MM as natural axiom, deciding
a large class of problems , including the size of the Continuum, that
has intuitive appeal and therefore should be considered to be a natural
candidate for adaption. But MM has a competitor: Woodin’s axiom
(*) ([44],see also [21]) has the same intuitive motivation: Namely the
universe of sets is rich. (At least Hω2 is rich.) Formally (*) is equivalent
to the statement that every π2 statement that can be forced to hold
for Hω2 is already true in Hω2 of the ground model. The remarkable
fact ([44]) is that (*) implies many of the consequences of MM for
Hω2 .In particular it implies 2ℵ0 = ℵ2. There is a strong evidence that
(*) is the right axiom to assume for the structure 〈L[P (ω1)], ε, NSω1〉
where NSω1 is the non stationary ideal on ω1 in the same sense that the
Axiom of Determinacy (AD) seems the right axiom for the structure
〈L[P (ω)], ε〉. So it also seems a natural axiom to be adapted.7

So we have two competing axioms to , motivated by the same in-
tuition, supported by similar slogans. Are they compatible? can we
adapt both of them? Till recently it seems that the combination is
problematic. Larson in [22] showed , assuming that consistency of su-
percompact limit of supercompacts , that one can get model in which
MM holds but (*) fails. In fact what one has in this model that in

7(*) does not imply the results of MM for the larger segment of the universe
of Set Theory because it is essentially an axiom about L[P (ω1]) . It is equivalent
to the statement that L[P (ω1]) is a forcing extension of L[R] by a particular nice
forcing notion Pmax.
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the structure 〈Hω2 , ε, NSω1〉 there is a definable well ordering while (*)
implies that such a well ordering does not exists. On the other hand
the only known way to get a model of (*) was to force over L[R] and
since MM is a global axiom one can not get a model of MM by forcing
over a ”small” model like L[R].

But there is a conjecture that ,if true will, change the situation dra-
matically. It involves a natural extension of MM which is denoted by
MM++.Each forcing axiom has its ++ version. Remember the original
motivation of the forcing axioms:

If one can force the existence of a set satisfying a given
property and there is no clear obstruction to its existence
then such a set exists.

then the ++ version seems like even a better formulation of the intuitive
concept than the formulation we adapted. MM++ is the following
axiom:

Axiom 6.7. Let P be a forcing notion which preserves stationary sub-
sets of ω1. Let α be an ordinal such that P ∈ Vα. Then the set of
M ∈ Pω2(Vα) such that there is a M generic filter GM ⊆ P ∩M such
that if S ⊆ ω1, S ∈M [GM ] then M [GM ] � S ∈ NSω1 ⇔ V � S ∈ NSω1

is stationary in Pω2(Vα).

Namely the ++ version claims that we not just that we can find
enough elementary substructures of Vα which has a generic object in V
but also that we can assume that this generic object is correct about
subsets of ω1 being stationary. So the object we get in the ground
model is even a better approximation to the object we get by forcing.
This is clearly very much in the spirit which let us study the forcing
axioms in the first place.So the conjecture is:

Conjecture 6.8. MM++ implies Woodin’s (*) axiom.

If this conjecture is true then it will be strong evidence for adapting
MM++. I think that a proof of this conjecture will be a confirmation
for both MM++ (hence for MM) and for (*) in the same sense that the
fact two separate scientific theories with desirable consequences can be
merged into one unified theory can be considered to be confirmation
for both of them.

MM or even better MM++ is a global axiom that has many conse-
quences throughout the universe . (See for instance [5] for the impact
of MM on variations of the combinatorial principle �κ for many car-
dinals κ. ) But MM impact is mostly on sets of size ≤ ℵ1 so a natural
research program is to try and find reasonable forcing axioms that ap-
ply to sets of size ℵ2 and more. There are some initial steps in this
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direction due to Neeman ([30]) and and Gitik ([14]).This study is only
in its infancy.

6.3. Definable Version Of CH. We very briefly describe a third
stream of ideas that could motivate anther approach for deciding CH.This
stream of ideas is presented in Koellner [21] section 2 which follows the
analysis in Martin’s [27]. The motivating slogan is

If there is a counter example to CH there there should
be a definable or ”nice” example.

Or even more

If the continuum is greater or equal than a specified
cardinal κ then there should be a ”nice” evidence for
this fact.

Namely the intuition is that the answer to the problem of CH should
be the same when we consider the problem in the context of ”nice”
sets.The analysis of [27] makes it very clear that in the definable context
there are actually three different versions of CH:

(1) The interpolation version: Does there exists a ”nice” set of
reals whose cardinality is strictly between ℵ0 and 2ℵ0?

(2) The well-ordering version : Does there exists a ”nice” well
ordering of a set of real numbers of order type ω2?

(3) The surjection version: Does there exists a ”nice” surjection
of a set of reals on ω2?

As pointed by Martin the three versions are different for any reason-
able definition of ”nice” . In order to discuss it let us fix what do we
mean by ”nice”. If we take it to mean definable by a formula of some
fixed complexity , then we have the problem of the resilience of the
definition and of the set defined when we change the universe of Set
theory. We therefore prefare the more structural definition of ”nice”
which is requiring that the sets in question being universally Baire.

Definition 6.9 (Feng,M., Woodin ( [10])). A set of Reals ,A is said to
be universally Baire if for very topological space Y and every continuous
function F : Y → R the set f−1(A) has in the property of Baire in the
space Y . (A similar definition applies to subset of Rk or for that matter
any Polish space). A surjection F of a set of reals onto an ordinal λ is
Universally Baire if the set of pairs {(x, y)|F (x) ≤ F (y)} is universally
Baire subset of R2.

Universally Baire sets have most of the regularity properties (even
just assuming ZFC) one would expect from a ”nice” set: They are
Lebesgue measurable, has the property of Baire, Have the Berenstein
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property (either the set or its complement contains a perfect subset)
etc. If one assumes the existance of even one Woodin cardinal then
the Universally Baire sets are either countable or contain a perfect
subset. Universally Baire sets also have the important property that
when we take forcing extension of our universe then there is a canonical
interpretation of the meaning of the set in the extension. Actually even
more is true:

Theorem 6.10 (Neeman [31]). If A is a universally Baire subset of
the space ωω then the infinite game G(ω,A) is determined.

The following theorem connects the property of being Universally
Baire and definability.

Theorem 6.11 (Woodin [43]). If there is a proper class of Woodin
cardinals then every set of reals which is in L[R] is Universally Baire.

So if we agree that ”nice”=”Universally Baire” then the problems of
the ”nice” CH becomes:

(1) The interpolation version: Does there exists a Universally
Baire set of reals whose cardinality is strictly between ℵ0 and
2ℵ0?

(2) The well-ordering version : Does there exists a Universally
Baire well ordering of a set of real numbers of order type ω2?

(3) The surjection version: Does there exists a Universally Baire
surjection of a set of reals on ω2?

Even if we assume only ZFC with no additional axioms still there are
some open problems concerning the three variations of the Universally
Baire CH. For instance for the interpolation version : it is not known
that there is in any model of Set Theory an uncountable Universally
Baire set of cardinality different form ℵ0,ℵ1, 2ℵ0 . 8 So we conjecture

Conjecture 6.12. If A is a universally Baire set of reals then either
|A| ≤ ℵ1 or A contains a perfect subset.

Similarly for the the well-ordering version : We can have for instance
(in L) a well ordering of a set of reals of order type ℵ1. But no well
ordering of larger cardinality is known in any model of Set Theory. So
we conjecture

Conjecture 6.13. Any ordinal which is the order type of a Universally
Baire well ordering of a set of reals is < ω2.

8In the models constructed by Harrington [18] in which there are Π1
2 sets of any

given cardinality bellow the continuum,the sets constructed are simply definable
but not Universally Baire.
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In the presence of large cardinals the picture is much simpler as
far as the first two versions: If there is a Woodin cardinal then every
Universally Baire set of reals is either countable or contains a perfect
subset. The situation is even more dramatic with respect to the well
ordering version: Under the existence of Woodin cardinal then every
Universally Baire well ordering of a set of reals in countable. So if
we assume the existence of a Woodin cardinal then the well ordering
version has no bearing on the Continuum problem. Also as Martin and
Koellner argue in [27] and [21] the interpolation version does not shed
light on the continuum problem.

The third version:the surjection version is more interesting. Here
there is a chance even assuming the existence of large cardinals that if
2ℵ0 = κ then we can have a Universally Baire evidence for that. We
feel that there is some intuitive appeal to following principle:

If 2ℵ0 ≥ κ then there is a Universally Baire Surjection
of R onto κ.

This intuition motivated what Koellner in [21] called the Foreman-
Magidor program. This was an attempt in [12] to prove that if there
is a Universally Baire surjection of R onto an ordinal α then α < ω2.
If this program was successful then we believe that it can be construed
as evidence for CH. The program as stated was shot down by Woodin

Theorem 6.14 (Woodin [44]). If the NSω1 is ω2 saturated and there is
a measurable cardinal then there is a ∆1

3 surjection of R onto ω2. Since
this surjection is in L[R] then if we assume the existence of a proper
class of Woodin cardinals then it is a Universally Baire surjection of R
onto ω2.

If we combine this theorem with a result of Schimmerling ([35]) about
PFA and AD and the fact from [11] that MM implies that NSω1 is
ω2 saturated. we get

Theorem 6.15. MM implies that there is a Universally Baire surjec-
tion of R onto ω2

So our favored axiom MM implies that really there is a ”nice” evi-
dence for the size of the continuum is ℵ2. (in the surjection sense.)

What is being called The Foreman-Magidor program is not com-
pletely dead because we do not know any model of ZFC in which
there is a Universally Baire surjecton of R onto ω3.

9

9We are talking here about model with choice. In a universe that satisfies AD
the first cardinal such there is no surjection of R onto it is rather large and definitely
larger than ω3.This cardinal is usually denoted by Θ.
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So one can still conjecture which makes sense whether one assumes
large cardinals or not, even though of proof of it even under the as-
sumption of large cardinals will be very interesting:

Conjecture 6.16. There is no Universally Baire surjection of R onto
ω3.

If this conjecture is true then it could be considered as evidence
assuming that 2ℵ0 ≤ ℵ2 is a very natural assumption .

7. coda

I hope that the previous sections give some good arguments why it
is a meaningful question to ask whether one strengthening of ZFC is
better than another and it is relevant question even if we consider that
the main goal of Set Theory is extrinsic, namely to give a foundational
support for Mathematics and through it to all of Science. We described
some process by which we evaluate different set theories and decide on
our favorite axioms.Admittedly this decision can change over time when
more mathematical facts become available. This is a process that is not
dissimilar to the process by which any branch of science decides on the
current theory, where at any given time there may be several candidates
but we are never in a situation in which we allow wild pluralism. The
process, which is an on going process is based both on the consequences
of the theory, or on its coherence with some intuitive feeling of what
the right theory should be. This intuition is also an ongoing process
and the intuition is refined by additional evidence.I believe that this
description of the process is close to what Maddy ([25] was refereing to
as a ”proper set theoretic method”.

As far as the most important open problem: CH, we believe that
the process we described above leads in directions that will eventually
will refine our theory to the extent that we shall have a definite answer
for the value of the Continuum as well as answers to many other inde-
pendent problems. Interesting fact is that the three directions charted
in the previous section leads us to only two possible values for the
continuum: either ℵ1 or ℵ2. We of course have to remember that the
approaches in the previous section are based on unproved conjectures.
Another interesting fact is the prominence of the cardinal ℵ2 which
keeps appearing over and over again in many seemingly different con-
texts.It is a historical curiosity that Gödel in his last years believed
that the right value of the continuum is ℵ2 and tried to find arguments
supporting it though his attempted proof of 2ℵ0 = ℵ2 from the axioms
that he considered natural was wrong. See the introduction by Solovay
to the Gödel unpublished paper in [16], vol 3 pages 405-425.
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So not all set theories are equal . In Orwellian language ”Some set
theories are more equal”. The challenge to the set theorists is to make
sure that ”The set Set Theory will win!”.
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