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The developments of set theory in 1960’s led to an era of independence in
which many of the central questions were shown to be unresolvable on the
basis of the standard system of mathematics, ZFC. This is true of state-
ments from areas as diverse as analysis (“Are all projective sets Lebesgue
measurable?”), cardinal arithmetic (“Does Cantor’s Continuum Hypothesis
hold?”), combinatorics (“Does Suslin’s Hypotheses hold?”), and group theory
(“Is there a Whitehead group?”).

These developments gave rise to two conflicting positions. The first
position—which we shall call pluralism—maintains that the independence
results largely undermine the enterprise of set theory as an objective enter-
prise. On this view, although there are practical reasons that one might give
in favour of one set of axioms over another—say, that it is more useful for a
given task—, there are no theoretical reasons that can be given; and, more-
over, this either implies or is a consequence of the fact—depending on the
variant of the view, in particular, whether it places realism before reason,
or conversely—that there is no objective mathematical realm at this level.
The second position—which we shall call non-pluralism—maintains that the
independence results merely indicate the paucity of our standard resources
for justifying mathematical statements. On this view, theoretical reasons can
be given for new axioms and—again, depending on the variant of the view—
this either implies or is a consequence of the fact that there is an objective
mathematical realm at this level.

The theoretical reasons for new axioms that the non-pluralist gives are
quite different that the theoretical reasons that are customarily at play in
mathematics, in part because, having stepped into the realm of independence,
a more subtle form of justification is required, one that relies more heavily
on sophisticated mathematical machinery. The dispute between the pluralist
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and the non-pluralist is thus one that lies at the intersection of philosophy
and mathematics—on the one hand, it is intimately connected with some
of the central questions of philosophy of mathematics, such as the question
of realism and the nature of justification; on the other hand, it addresses
these questions in a manner that is sensitive to a great deal of sophisticated
mathematics.

The debate between the pluralist and the non-pluralist is really a hier-
archy of debates. At the one extreme there is pluralism with regard to all
of mathematics and at the other extreme there is non-pluralism with re-
gard to all of mathematics. The intermediate positions (which are much
more common) involve embracing non-pluralism for certain domains (say
first-order arithmetic), while advocating pluralism with regard to others (say
those where the notion of the full powerset enters the picture). Fortunately,
the mathematical systems that arise in practice can be arranged in a well-
founded hierarchy—ranging from weak systems like Robinson’s arithmetic Q,
up through Peano arithmetic PA, the subsystems of second-order arithmetic,
the subsystems of set theory, and the hierarchy of large cardinal axioms.
One can thus arrange the hybrid non-pluralist/pluralist positions and the
corresponding debates in a well-founded hierarchy, where along the way one
embraces more and more non-pluralism. The challenge for those with non-
pluralist tendencies is to make the case that non-pluralism extends further
and further into the upper reaches of higher mathematics. The challenge for
those with pluralist tendencies is to draw the line in a principled manner
and make the case that no argument for non-pluralism will succeed for the
domains of mathematics beyond that line.

It is sensible to approach the search for new axioms and the question
of pluralism in a stepwise fashion, seeking first axioms that resolve certain
low-level questions and making the case for non-pluralism at that level, and
then proceeding upward to questions of greater complexity and the question
of pluralism at higher levels. The present entry focuses on this debate as it
takes place in the setting of classical descriptive set theory. There are three
reasons for this choice. First, a popular view embraces non-pluralism for first-
order arithmetic but rejects the search for new axioms for full second-order
arithmetic and set theory and embraces pluralism at these levels.1 The ques-

1This view that only natural numbers (and things reducible to them) have real math-
ematical existence has a long tradition, going back at least to the German mathematician
Martin Ohm (1792–2872). Other notable figures in this tradition include Leopold Kro-
necker (1823–1891), Hermann Weyl (1885–1955), and, more recently, Solomon Feferman.
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tions of descriptive set theory are important in this connection since many
of them are statements of second-order arithmetic which are independent of
the standard axioms, ZFC. It thus represents a critical juncture in the de-
bate between the pluralist and non-pluralist. Second, here the mathematical
landscape with regard to the implications of new axioms has largely stabi-
lized and we now have the resources required to address the issue between
the pluralist and the non-pluralist. (In the case of questions of third- and
higher-order arithmetic the matter still awaits further mathematical devel-
opments. That topic is treated in the entry “The Continuum Hypothesis”.)
Finally, the case for new axioms at this level involves so-called “extrinsic
justifications” (something we shall describe below) and, moreover, provides
the strongest current example of such justifications.

Here is an overview of the present entry: Section 1 provides further philo-
sophical motivation and sharpens the question of pluralism by briefly dis-
cussing the interpretability hierarchy, the incompleteness phenomenon, and
the nature of axioms. Section 2 describes the central notions and results
of classical descriptive set theory along with the independence results con-
cerning the questions that remained open and were ultimately shown to be
unresolvable on the basis of the standard axioms, ZFC. Section 3 describes
the two main approaches to new axioms—axioms of definable determinacy
and large cardinal axioms—and discusses the implications of these axioms for
the undecided questions of classical descriptive set theory. Section 4 treats
of the intimate relationship between the two approaches and outlines the
case that has been made for axioms of definable determinacy and large car-
dinal axioms. Section 5 revisits the debate between the pluralist and the
non-pluralist in light of the foregoing mathematical developments.

1 Philosophical Motivation

One way to sharpen the question of pluralism involves appeal to the inter-
pretability hierarchy. In this section we will (1) introduce the interpretability
hierarchy, (2) briefly discuss the incompleteness phenomenon, (3) sharpen
the question of pluralism, and (4) bring out the philosophical issues involved
by briefly discussing the nature of axioms and the nature of justification in
mathematics.

See Ferreirós (2007), pp. 11–13 for further discussion on the early history.
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1.1 Interpretability Hierarchy

Suppose T1 and T2 are recursively enumerable axiom systems. We say that T1
is interpretable in T2 (T1 6 T2) when, roughly speaking, there is a translation
τ from the language of T1 to the language of T2 such that, for each sentence ϕ
of the language of T1, if T1 ⊢ ϕ then T2 ⊢ τ(ϕ). We shall write T1 < T2 when
T1 6 T2 and T2 
 T1 and we shall write T1 ≡ T2 when both T1 6 T2 and T2 6
T1. In the latter case, T1 and T2 are said to be mutually interpretable. The
equivalence class of all theories mutually interpretable with T is called the
interpretability degree of T . The interpretability hierarchy is the collection
of all theories ordered under the relation 6.

There is a useful characterization of the relation 6 that applies when it is
restricted to the type of theories that we will be considering. To describe this
we need a few more notions. A theory T is reflexive provided it proves the
consistency of each of its finite fragments, it is Σ0

1-complete provided it proves
each true Σ0

1-statement, and it is Σ0
1-sound provided it does not prove a false

Σ0
1-statement. Let ‘T1 ⊆Π0

1
T2’ be shorthand for the statement that all Π0

1-
sentences provable in T1 are provable in T2. The following characterization
of interpretability is central to the theory of interpretability: If T1 is reflexive
and Σ0

1-complete, then

T1 6 T2 iff T1 ⊆Π0

1
T2.

This result is due to Orey and Hájek.2 It follows from this result and the
second incompleteness theorem that for any theory T meeting these two con-
ditions, the theory T + Con(T ) is strictly stronger than T , that is, T <

T + Con(T ). Moreover, it follows from the arithmetized completeness theo-
rem that the T + ¬Con(T ) is interpretable in T , hence, T ≡ T + ¬Con(T ).3

It turns out that the interpretability order is exceedingly complex. For
example, through the uses of metamathematical coding techniques, one can
show that for any two theories T1 and T2 such that T1 < T2 there is a third
theory T such that T1 < T < T2. And for any theory T , one can show that
there are theories T1 and T2 such that T1 > T and T2 > T and yet neither
T1 6 T2 nor T2 6 T1 (that is, T1 and T2 are above T and are incomparable in
the interpretability order). Thus, the order on the degrees of interpretability
is neither well-founded nor linearly ordered.

2For further details see Theorem 6 on p. 103 of Lindström (2003) and Fact 3.2 of Visser
(1998).

3See Feferman (1960).
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Nevertheless, when one restricts to theories that “arise in nature” (that
is, the kind of formal systems that one encounters in a mathematical text
as opposed to examples of the type above, which are metamathematically
manufactured by logicians to have the deviant properties in question) the
interpretability ordering is quite simple: There are no descending chains and
there are no incomparable elements. In other words, it is a well-ordering.
This is quite remarkable: If one takes any two “natural theories”—even
from completely different domains, say one from analysis and another from
combinatorics—then generally it turns out that one is interpretable in the
other and that the two line up along a well-founded path through the inter-
pretability hierarchy.

This well founded path through the interpretability hierarchy has a canon-
ical sequence through it which enables one to climb the hierarchy in a prin-
cipled manner. At the base one has the very weak theory Q and one climbs
upward by adding “closure principles”. This starts with principles asserting
that certain fast-growing functions—exponentiation, super-exponentiation,
etc.—are total and it proceeds upward through set existence principles, pass-
ing through the layers of second-order arithmetic, the subsystems of set the-
ory, and the hierarchy of large cardinal axioms.

Of particular interest with regard to the question of pluralism are those
points along the well-founded sequence that correspond to certain limitative
conceptions of the nature of mathematics, such as the degree marked by Q
(which corresponds to strict finitism in the sense articulated by Nelson), the
degree marked by PRA (which corresponds to finitism in the sense articulated
by Tait), and the degree marked by ATR0 (which corresponds to predicativism
in the sense articulated by Feferman). In each case, one draws the line at a
certain point in the hierarchy, maintaining non-pluralism below and pluralism
above.

Further Reading : For a more detailed account of the interpretability hier-
archy see the entry “Independence and Large Cardinals”. For even further
detail see Lindström (2003) and Visser (1998).

1.2 Independence Phenomenon

We noted above that the second incompleteness theorem provides us with
a case where the statement, namely, Con(T ), leads to a jump in the in-
terpretability hierarchy while its negation does not. There are also natural
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examples of this phenomenon—for example, large cardinal axioms. When a
statement ϕ is independent of a theory T in this manner—that is, in virtue
of the fact that T < T + ϕ—we shall refer to the kind of independence in-
volved as vertical independence. Thus, the second incompleteness theorem
demonstrated that Con(PA) is vertically independent of PA (assuming, of
course, that PA is consistent) and that the large cardinal axioms “There is
a strongly inaccessible cardinal” is vertically independent of ZFC (assuming
that ZFC + “There is a strongly inaccessible cardinal” is consistent).

In contrast to vertical independence there is the kind of independence
that arises when a sentence ϕ is independent of a theory T because

T ≡ T + ϕ and T ≡ T + ¬ϕ.

Such a sentence ϕ is called an Orey sentence with respect to T . We shall refer
to this kind of independence as horizontal independence. Using metamath-
ematical techniques one can construct such sentences. But again, as in the
case of vertical independence, there are also natural non-metamathematical
examples—for example, PU (the statement that the projective sets have the
uniformization property, a property we shall discuss below) is a statement
of (schematic) second-order arithmetic that is an Orey sentence with respect
to ZFC, and CH is a statement of third-order arithmetic that is an Orey
sentence with respect to ZFC.

1.3 The Question of Pluralism

With these pieces in place we can now begin to sharpen the question of
pluralism.

As a first step we will restrict our attention to theories which are for-
mulated in a common language and our language of choice will be the lan-
guage of set theory. The reason for restricting to a common language is
that otherwise there will be theories which are merely notational variants of
one another. And the reason for focusing on the language of set theory is
that it is a universal language in the sense that any system of mathematics
is mutually interpretable with a theory formulated in the language of set
theory; for example, PA is mutually interpretable with ZFC−Infinity. We
are thus setting aside the question of pluralism as it might arise in a more
metaphysical setting where one considers questions such as whether natural
numbers are “really” sets or whether instead there are two distinct domains
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of objects—natural numbers and the finite ordinals of set theory. Our focus
is on the question of pluralism as it arises in response to the independence
phenomenon and the issues at play in this discussion are invariant across
different stances on the above metaphysical question. With regard to our
question there is no loss of generality in the restriction to the language of set
theory since the problem of finding new axioms for PA translates (through
the natural interpretation of number theory into set theory) into the prob-
lem of finding new axioms for ZFC−Infinity, and conversely. Nevertheless,
in what follows we shall, largely out of convenience and familiarity, continue
to speak of theories that are formulated in other languages—such as Q and
PA—but the reader should always understand us to be strictly speaking of
the corresponding theory in the language of set theory.

The question of pluralism in its most general formulation is the question
of whether there is a correct path through the hierarchy of interpretability
or whether instead a multitude of mutually incompatible theories must be
admitted as equally legitimate from the point of view of theoretical reason
and mathematical truth. There are really two problems that must be ad-
dressed. The first is the question of how far the hierarchy of interpretability
extends, that is, which degrees are non-trivial in that the theories within
them are consistent. This is the problem of consistency (or non-triviality).
The second is the question of whether, for a given (non-trivial) degree of in-
terpretability, there are theoretical reasons that can be given for one theory
over another. This is the problem of selection. If one managed to solve both
problems—determining the extent of the non-trivial degrees and locating
the correct path through them—then one would have completely solved the
problem of mathematical truth. There are, however, two important things
to stress about this. First, because of the incompleteness theorems, any such
solution would have to be “schematic” concerning the first part (vertical in-
dependence). Second, the solution to the full problem of selection even for
the degree of ZFC is a very difficult one since it involves resolving CH and a
multitude of other independent statements that arise already at this level.

Because of the difficulty of the second problem it is useful to split it up
into its own hierarchy by classifying statements in terms of their complexity.
We shall discuss the hierarchy of statement complexity in more detail in the
next section. But for the moment suffice it to say that (roughly speaking) one
starts with questions of second-order arithmetic (stratified according to their
complexity) and then one moves on to questions of third-order arithmetic
(stratified according to their complexity), and so on. Thus, one first tries to
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solve the problem of selection at the level of, say, statements of second-order
arithmetic and then one moves on to the problem of selection for statements
of third-order arithmetic, and so on. The question of pluralism that we will
be addressing is located in the hierarchy as follows: It takes a non-skeptical
stance toward ZFC and seeks axioms that solve the problem of selection for
the level of second-order arithmetic and somewhat beyond.4

Let us now give some examples of the various pluralist/non-pluralist po-
sitions. At one extreme there is radical pluralism which maintains that all
non-trivial theories in the interpretability hierarchy are on a par and that
there are no theoretical reasons that one can give for any theory over an-
other. This form of pluralism is difficult to articulate since, for example,
assuming that Q is consistent the theory Q + ¬Con(Q) is consistent. But
it is hard to see how the pluralist can admit this theory as a legitimate
candidate since it contains a principle—namely, ¬Con(Q)—that is in con-
flict with the background assumption that the pluralist employs in arguing
that the theory is a legitimate candidate. For this reason most people are
non-pluralists about some domains but remain pluralists about others.

The limitative views that we mentioned earlier—strict finitism, finitism,
and predicativism—are examples of such hybrid views. For example, strict
finitists (on one construal) accept Q and certain theories that are mutually
interpretable with Q, thereby adopting non-pluralism for this domain. In
addition, the strict finitist takes these theories to exhaust the domain of
objective mathematics and adopts a pluralist stance toward the remainder.5

In a similar fashion, finitism and predicativism provide us with examples of
hybrid non-pluralist/pluralist positions.

Predicativism is of particular interest for our present purposes since it
grants the frameworks of the natural numbers but rejects most of set theory
and, in fact, most of second-order arithmetic. The predicativist is a non-

4We should note that there are some views that accept the standard hierarchy of large
cardinal axioms—and so climb the canonical path through the well-founded stem of the
interpretability hierarchy “all the way”—and yet are pluralist about statements of third-
order arithmetic, in particular CH. So once one has solved the problem of consistency—
even in the strong sense where one actually adopts the theories in the canonical sequence—
there is still plenty of room for pluralism in approaching the problem of selection.

5It should be noted that some strict finitists—like Nelson himself—think that expo-
nentiation is not total and so think that most of the degrees above that of Q are trivial
(inconsistent). Such a strict finitist will not be a pluralist about, say, PRA and the theories
extending it for the simple reason that such a strict finitist will think that these theories
are inconsistent.
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pluralist about first-order arithmetic and thinks that there is an objective
fact of the matter concerning every statement formulated in the language
of first-order arithmetic. And the predicativist accepts as much of second-
order arithmetic and set theory that can be simulated in a theory such as
ATR0. But the predicativist remains a pluralist about what lies above. The
predicativist will often grant that there is utility in employing axiomatic sys-
tems of set theory but will maintain that the issue of truth does not arise
at that level since there is no univocal underlying conception of set. For ex-
ample, the predicativist will think that there is an objective choice between
PA and PA + ¬Con(PA) but not think that there is an objective choice be-
tween PA2+PU and PA2+¬PU (where here PA2 is (schematic) second-order
arithmetic) or between ZFC and ZFC + “There are no strongly inaccessible
cardinals”. Insofar as the predicativist thinks that the independence results
in set theory concerning second-order arithmetic are a reason for endorsing
pluralism about both ZFC and PA2 the non-pluralist case we shall present
below is directly engaged with the predicativist. But we should stress that for
this discussion we shall be presupposing ZFC and so the most direct brand
of non-pluralism/pluralism that we shall be engaged with is one that takes
a non-pluralist stance toward ZFC but a pluralist stance toward statements
like PU which are formally unresolvable on the basis of ZFC. This is a fairly
common view. See, for example, Shelah (2003).

Further Reading : For more on strict finitism see Nelson (1986); for more
finitism see Tait (1981); for more on predicativism see Feferman (1964) and
Feferman (2005).

1.4 The Nature of Axioms

The above characterization of the question of pluralism makes it clear that
it is closely connected with issues concerning the nature of justification in
mathematics. The most traditional form of justification in mathematics in-
volves justifying a statement by proving it from the axioms. This then raises
the question: What is the source of the justification of the axioms?

The radical pluralist maintains that there is nothing that justifies the
axioms; rather they are simply postulates that one adopts hypothetically for
a given purpose. This view faces the difficulty raised above. Most would
maintain that axioms have a privileged status and that this status is more
than merely hypothetical.
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1.4.1 The Evidentiary Order

A popular view is that axioms are self-evident truths concerning their do-
main. The difficulty with this view is that the notion of self-evidence is a
subjective notion. There is consequently much unresolvable disagreement as
to what is to count as self-evident and if we restrict ourselves to the intersec-
tion of the statements that all mathematicians would regard as self-evident
then the result will be quite limited in reach, perhaps coinciding with Q or
slightly more.6 Markov had a similar complaint with the employment of the
related notion of being “intuitively clear”:

I can on no way agree to taking ‘intuitively clear’ as a criterion
of truth in mathematics, for this criterion would mean the com-
plete triumph of subjectivism and would lead to a break with the
understanding of science as a form of social activity. (Markov
(1962))

For these reasons we will set aside the notion of self-evidence.
But there is a related notion that we shall employ, namely, the notion

of one statement being more evident than another. In contrast to the case
of self-evidence, there is generally much more agreement on the question of
what is more evident than what.

To illustrate this it is best to give some examples: (1) Over the base theory
EFA, the Finite Ramsey Theorem is equivalent to the totality of superex-
ponentiation.7 See Friedman (2011), Section 0.5. (2) over the base theory
RCA0, the Hilbert Basis Theorem is equivalent to the statement that ωω is
well-ordered. See Friedman (2011), Section 0.6D. (3) Over the base theory
ACA′, Goodstein’s Theorem and the Hydra Theorem are each equivalent to
the Σ0

1-soundness of PA. See Friedman (2011), Sections 0.8B and 0.8E. (4)
Over the base theory RCA0, Kruskal’s Tree Theorem is equivalent to the
statement that θΩw is well-ordered. See Friedman (2011), Section 0.9B. (5)
Over the base theory ACA′, the Exotic Case (of Boolean Relation Theory)
is equivalent to the Σ0

1-soundness of SMAH. See Friedman (2011), Sections
0.14C.

6Nelson is one mathematician who does not accept the totality of exponentiation and
this alone serves to rule out most systems beyond the degree of Q.

7This theory is obtained from Q by adding Σ0-induction and the statement asserting
that exponentiation is total.
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In each of the above cases, the second statement is more evident than the
first and there is general agreement on this fact. For example, the Hilbert
Basis Theorem is far from immediate. It is the sort of thing that we set
out to prove from things that are more evident. In contrast, the statement
that ωω is well-founded is something that becomes clear by reflecting on the
concepts involved. It is not the sort of thing that we set out to prove from
something more evident. This is what lies behind the fact that the Hilbert
Basis Theorem is called a theorem and not an axiom. As one climbs up
through the other examples, the asymmetry becomes even more dramatic.
For example, the Hydra Theorem and Kruskal’s Theorem are actually quite
surprising and counter-intuitive. These are definitely the sort of statements
that require proof on the basis of statements that are more evident.

We shall organize the statements in each interpretability degree by the
relation of being more evident than and we shall speak of the collection of
all statements so ordered as the evidentiary order.

A few words of caution are necessary concerning this ordering. First, in
saying that X is more evident than Y we do not intend that X (or Y ) is
self-evident or even evident. To underscore this point we will often use the
expressions “X is prior to Y in the evidentiary order” and “X is evidentially
prior to Y ”. Second, even in the case where X is minimal in the evidentiary
order (within a given interpretability degree) we refrain from saying that X
is self-evident; indeed if the degree is sufficiently high then this will not be
the case. Third, the evidentiary order is to be understood as an epistemic
order and not, say, the order of conceptual complexity.

One might raise skeptical worries about the evidentiary order. For ex-
ample, perhaps judgments of the form “X is prior to Y in the evidentiary
order” are really just reflections of our mathematical training. The best way
to allay such concerns and test the robustness of the notion is to examine ex-
amples. Compare, for example, the statement of the Hydra Theorem and the
statement that ǫ0 is well-ordered with respect to primitive recursive relations
(a weak (semi-constructive) form of the statement that ǫ0 is well-ordered).
If you describe the relevant notions to a mathematician or layperson who is
not familiar with them then you will find the following: There will be no
expectation that Hercules wins the Hydra. In fact, if you direct the person
to one of the computer programs (available online) that simulates the Hydra
you will find that they will be astounded at how fast the Hydra grows and
if you assure them that if they kept on playing—for a period of more years
than there are atoms in the physical universe (as currently estimated)—the
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tides will eventually turn, they will make gains and eventually cut the Hydra
down to size, you will find that they will look at you in amazement. This
is something that needs proof. Now if you describe to them the ordinals
all the way up to ǫ0 and you describe the notion of a well-ordering and ask
them whether ǫ0 is well-founded you will find that the answer rests solely
on whether they have grasped the object in question. To come to the con-
clusion that ǫ0 is well-founded one does not search for a proof from some
other statement which is more evident. Rather one works directly with the
concepts involved. The statement is, as it were, rests on the legitimacy of the
underlying concepts and one comes to accept it by grasping those concepts.
It is here that the buck stops in the process of seeking justification. And this
is what we mean in saying that the statement “ǫ0 is well-ordered” is minimal
in the evidentiary order (of the degree of the Hydra Theorem).

In seeking axioms for theories within a given interpretability degree8 we
seek axioms that are as low as possible in the evidentiary order. Ultimately
one would like to find axioms that are minimal in the evidentiary order.
But questions remain: (1) Can we be assured of finding minimal points
that are secure? The concern is that as one climbs up the interpretability
degrees the security of the minimal points will weaken to the point where
there would arguably be little security left. To see this consider statements
of the form “α is well-ordered” where α is the proof-theoretic ordinal of the
interpretability degree. As one climbs the degrees one passes through ǫ0, Γ0,
and θΩw. This barely scratches the surface and yet already the corresponding
statements have become less evident. This leads to the second question. (2)
Is finding a minimal point in the evidentiary order (of a given interpretability
degree) the most one could hope for or are there other, more subtle ways of
accumulating evidence for axioms, ways that might further buttress even the
minimal points in the evidentiary order (of a given interpretability degree)?

1.4.2 Intrinsic versus Extrinsic Justifications

There is a discussion of Gödel that has bearing on each of these questions,
namely, his discussion of intrinsic and extrinsic justifications in his classic
paper Gödel (1947) (expanded as Gödel (1964)).

In introducing the notion of an intrinsic justification Gödel gives as an
example certain large cardinal axioms that are just beyond the reach of ZFC:

8Note that we are individuating our theories by their axioms.
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[The] axioms of set theory [ZFC] by no means form a system
closed in itself, but, quite on the contrary, the very concept of
set on which they are based suggests their extension by new ax-
ioms which assert the existence of still further iterations of the
operation “set of” (260).

As examples he mentions the axioms asserting the existence of inaccessible
cardinals and Mahlo cardinals:

These axioms show clearly, not only that the axiomatic system
of set theory as used today is incomplete, but also that it can be
supplemented without arbitrariness by new axioms which only
unfold the content of the concept of set as explained above. (260–
261, my emphasis)

Since Gödel later refers to such axioms as having “intrinsic necessity” we
shall accordingly speak of such axioms being intrinsically justified on the
basis of the iterative concept of set.

The notion of extrinsic justification is introduced as follows:

[E]ven disregarding the intrinsic necessity of some new axiom,
and even in case it has no intrinsic necessity at all, a probable
decision about its truth is possible also in another way, namely,
inductively by studying its “success”. (261)

Here by “success” Gödel means “fruitfulness in consequences, in particular
“verifiable” consequences”. In a famous passage he writes:

There might exist axioms so abundant in their verifiable conse-
quences, shedding so much light upon a whole field, and yielding
such powerful methods for solving problems (and even solving
them constructively, as far as that is possible) that, no matter
whether or not they are intrinsically necessary, they would have
to be accepted at least in the same sense as any well-established
physical theory. (261)

Let us now consider some examples. Consider first the conception of
natural number that underlies the theory of Peano Arithmetic (PA). This
conception of natural number not only justifies mathematical induction for
the language of PA but also for any mathematical extension of the language
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of PA that is meaningful.9 For example, if we extend the language of PA
by adding the Tarski truth predicate and we extend the axioms of PA by
adding the Tarski truth axioms, then, on the basis of the conception of nat-
ural number, we are justified in accepting instances of mathematical induc-
tion involving the truth predicate. In the resulting theory, one can prove
Con(PA). This process can then be iterated.10 In contrast, the Π0

1-statement
Con(ZFC + “There are ω-many Woodin cardinals”) (a statement to which
we shall return below) is undoubtedly not intrinsically justified on the basis
of the conception of natural number; rather its justification flows from an
intricate network of theorems in contemporary set theory, as we shall argue
below.

Consider next the iterative conception of set. As in the case of arithmetic,
this conception (arguably) intrinsically justifies instances of Replacement and
Comprehension for certain extensions of the language of set theory. But
there are richer principles that are (arguably) intrinsically justified on the
basis of this conception, namely, the set-theoretic reflection principles. These
principles assert (roughly) that any property that holds of V holds of some
initial segment Vα. These principles yield inaccessible and Mahlo cardinals
(and more) and quite likely underlie Gödel’s claims in the above passage.
Some have argued that such reflection principles are intrinsically justified on
the basis of the iterative conception of set and, moreover, that they exhaust
the principles that can be intrinsically justified on that conception. See, for
example, Tait (2001), reprinted in Tait (2005b), pp. 283–284.

There is a view according to which intrinsically justified axioms are mini-
mal points in the evidentiary order and, moreover, that that is the most that
one can hope for. On such a view, if one grants that the above principles of
set theory are intrinsically justified on the basis of the iterative conception of
set, then although one would have axioms that far surpassed the reaches of
predicativism and even ZFC, limitations would still remain and presumably
a proponent of such a view would embrace pluralism for the remainder. For
example, if, as Tait (2001) argues, intrinsic justifications are confined to the

9Notice that in speaking of X being intrinsically justified on the basis of Y , X stands
for a statement and Y stands for a conception. The relation is thus quite different than the
usual relation of justified on the basis of which holds between statements and statements.
The present notion bears comparison with the evidentiary order since in the case where
one has reached a minimal point—such as the case of “ǫ0 is well-ordered” one looks not
to other statements for epistemic support but rather to the underlying conception.

10For more on this subject see Feferman (1991) and the references therein.
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hierarchy of reflection principles investigated in Tait (2005a), then by the
results of Koellner (2009a), such a view would have to embrace pluralism
with regard to PU.

Extrinsic justifications provide us with the hope of securing axioms that
have much greater reach. For they provide us with an additional way to
secure axioms, one that proves to be very rich. On this view one can hope
for much more than a minimal point in the evidentiary order—one can hope
to garner evidence for a proposition examining its inter-relationships with
other statements that are low in the evidentiary ordering. Let us describe in
very broad brush strokes how this might work. To begin with, let us say that
a statement is “intrinsically plausible” if it is “low” in the evidentiary order
but the sort of thing that could be overturned by other evidence.11 One way
to garner support for a proposition is to show that it leads to intrinsically
plausible consequences. If one then shows that it is the only statement that
has these intrinsically plausible consequences then that strengthens the case
by ruling out possible incompatible competitors. If one shows that there
are other intrinsically plausible statements that actually imply the axiom in
question then that again strengthens the case by mapping over the degree of
intrinsic plausibility attached to one statement over to another.

On this picture the general structure of the case for new axioms is this:
First, for each interpretability degree one isolates the minimal points in the
evidentiary order and one organizes the entire degree under the degree of one
statement being more evident than another. As one climbs the interpretabil-
ity degrees the minimal points generally become less evident and so one
seeks additional support. Second, one then examines the interconnections
among the statements in the interpretability degree, in particular, among
the statements which are low in the evidentiary order. The hope is that a
series of deep mathematical theorems will reveal structural connections that
provides more and more evidential support for the statements. Should this
be the case then the loss in evidence attached to the minimal points as one
climbs the interpretability hierarchy would be compensated for by the gain
in structural connections that are revealed as one ascends to richer domains
of mathematics.

All of this is rather abstract at this stage. It is now time to turn to

11We intend to use this term in the same sense as Parsons. See Parsons (2000) and
chapter 9 of Parsons (2008) for a more detailed discussion of the notion and some of the
themes we touch upon here.
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a concrete mathematical case where such structural connections have been
found. The question, of course, will be whether the mathematics makes for
a convincing extrinsic case for new axioms. And the question of pluralism at
this level—where we are presupposing ZFC and trying to solve the problem
of selection for second-order arithmetic—will rest on the nature of the case.

Further Reading : For further discussion of the nature of axioms and justifi-
cation in mathematics see Parsons (2008) and Maddy (2011).

2 Classical Descriptive Set Theory

Descriptive set theory is the study of the structural properties of definable
sets of real numbers. In this section we shall (1) provide a brief historical
overview, (2) introduce the basic notions of descriptive set theory (explaining
what we mean by “definable sets” and “structural properties”), (3) describe
the central classical results, and (4) discuss the limitative results that ul-
timately explained why the classical descriptive set theorists had run into
difficulties when attempting to generalize their results.

2.1 Historical Overview

One reason for concentrating on definable sets of reals is that it is generally
easier to gain insight into definable sets of reals than arbitrary sets of reals
and, furthermore, there is hope that this insight will shed light on the lat-
ter. For example, in one of the earliest results in the subject, Cantor and
Bendixson showed that every closed set is either countable or has the size of
the continuum; in other words, the closed sets satisfy CH.

The main origins of the subject lie in the early 20th century in the work
of the French analysts Borel, Baire, and Lebesgue. The subject grew into
an independent discipline through the work of the Russian mathematician
Luzin (who had learned of the subject as a student while in Paris) and
was developed by his students, most notably Suslin. The end of this early
period of descriptive set theory was marked by a major theorem proved
by the Japanese mathematician Kondô in 1937. After nearly 40 years of
development, progress came to an abrupt halt. The explanation for this was
eventually provided by the independence results of Gödel and Cohen (in 1938
and 1963). For, using this machinery, it was shown that the open questions
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that the early descriptive set theorists were trying to answer could not be
resolved on the basis of the standard axioms of mathematics, ZFC. It is a
testament to the ingenuity of the early descriptive set theorists that they had
developed their subject right up to the edge of undecidability.

The independence results of Gödel and Cohen thus showed that if one
wished to develop descriptive set theory further then one must invoke ad-
ditional axioms. There were two main approaches, each of which led to a
rebirth of descriptive set theory. The first approach was to invoke axioms
of definable determinacy. The axiom of determinacy (AD) was introduced
by Mycielski and Steinhaus in 1962 and it was quickly seen to yield gener-
alizations of the results of classical descriptive theory. Unfortunately, AD
contradicts AC and for this reason it was never really proposed as a new
axiom. However, Solovay and Takeuti pointed out that there is a natural
such subuniverse, namely, L(R), in which AD could hold, consistently with
assuming AC in the full universe. This led to a hierarchy of axioms of de-
finable determinacy that underwent intensive investigation in the 1970s and
1980s. The main sources for this period are Moschovakis (1980) and the vol-
umes of the Cabal seminar during 1977–1985. The second approach was to
invoke large cardinal axioms. This approach was initiated by Solovay in 1965.
Finally, in the late 1960s Solovay conjectured that large cardinal axioms ac-
tually imply axioms of definable determinacy. If true, this would open the
way for a unification of the two approaches. This hope was realized in the
work of Martin, Steel, and Woodin from 1984 onward.

Further Reading : For more on the history of classical descriptive set theory
see Kanamori (1995).

2.2 Basic Notions

2.2.1 Hierarchies of Definability

In descriptive set theory it is convenient to work with the “logician’s reals”,
that is, Baire space: ωω. This is the set of all infinite sequences of natu-
ral numbers (with the product topology (taking ω as discrete)).12 In what

12This structure is homeomorphic to the irrationals (as standardly construed). The
reason for working with ω

ω instead of R is that ωω is homeomorphic to its finite products,
(ωω)n, in contrast to the situation with R. This enables one to concentrate on proving
results for ω

ω, and simply note that they lift (through the natural homeomorphisms) to
the finite products.
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follows, when we write ‘R’ we shall always mean ‘ωω’.
We are interested in sets of reals that are “definable” or “built up from

below by simple operations.” We shall discuss three central regions of the
hierarchy of definability—the Borel sets of reals, the projective sets of reals,
and the sets of reals in L(R).

The Borel sets of reals (or sets of k-tuples of reals) are obtained by starting
with the closed subsets of ωω (or (ωω)k for some k < ω) and closing under
the operations of countable union and countable intersection. This can be
described level by level as follows: Let k < ω. At the base level, let Σ

∼

0
1 consist

of the open subsets of (ωω)k and let Π
∼

0
1 consist of the closed subsets of (ωω)k.

For each ordinal α such that 0 < α < ω1, recursively define Σ
∼

0
α to consist of

the sets that are countable unions of sets appearing in some Π
∼

0
β, for β < α,

and define Π
∼

0
α to consist of the sets that are countable intersections of sets

appearing in some Σ
∼

0
β, for β < α. The Borel sets of (k-tuples of) reals are

the sets appearing in this hierarchy.13 In 1905 Lebesgue employed Cantor’s
notion of a universal set and technique of diagonalization to show that the
hierarchy of Borel sets is a proper hierarchy (that is, new sets appear at each
level).

The projective sets of reals (or sets of k-tuples of reals) are obtained
by starting with the closed subsets of (ωω)k and iterating the operations of
complementation and projection. For A ⊆ (ωω)k, the complement of A is
simply (ωω)k − A. For A ⊆ (ωω)k+1, the projection of A is

p[A] = {〈x1, . . . , xk〉 ∈ (ωω)k | ∃y 〈x1, . . . , xk, y〉 ∈ A}.

(Think of the case where k + 1 = 3. Here A is a subset of three-dimensional
space and p[A] is the result of “projecting” A along the third axis onto the
plane spanned by the first two axes.) We can now define the hierarchy of
projective sets as follows: At the base level, let Σ

∼

1
0 consist of the open subsets

of (ωω)k and let Π
∼

1
0 consist of the closed subsets of (ωω)k. For each n such

that 0 < n < ω, recursively define Π
∼

1
n to consist of the complements of

sets in Σ
∼

1
n, and define Σ

∼

1
n+1 to consist of the projections of sets in Π

∼

1
n. The

projective sets of (k-tuples of) reals are the sets appearing in this hierarchy.
This hierarchy is also a proper hierarchy, as can be seen using universal sets
and diagonalization.

It is useful to also introduce the ∆
∼

1
n sets. A set of (k-tuples of) reals

is ∆
∼

1
n iff it is both Σ

∼

1
n and Π

∼

1
n. In 1917, Suslin showed that the Borel sets

13It is straightforward to see that this collection is the least collection containing the
closed sets and closed under the operations of complementation and countable union.
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are precisely the ∆
∼

1
1 sets. Thus, the projective hierarchy extends the Borel

hierarchy.
It might seem odd to refer to the above hierarchies as hierarchies of de-

finability. However, as the notation indicates, the above hierarchies can be
recast in terms of definability. For example, the projective sets are exactly
the sets which are definable (with parameters) in second-order arithmetic. In
the notation Σ

∼

1
n, the superscript indicates that we are allowing quantification

over objects of second-order (that is, sets of integers (or, equivalently, real
numbers)), ‘Σ’ indicates that the starting quantifier is existential, the sub-
script indicates that there are n-alternations of quantifiers, and ‘∼’ indicates
that we are allowing real parameters. In the case where real parameters are
prohibited, the corresponding pointclasses are denoted Σ1

n, Π
1
n, and ∆1

n. The
former hierarchy (where real parameters are allowed) is called a boldface hi-
erarchy, while the latter (where real parameters are prohibited) is called a
lightface hierarchy. In a similar manner one can define a lightface version of
the Borel hierarchy.14 Thus, we really have two hierarchies of definability:
the lightface hierarchy and the boldface hierarchy.

The projective hierarchy can be extended into the transfinite as follows:
For a set X , let Def(X) consist of the subsets of X that are definable over
X using parameters from X . This is the definable powerset operation. The
hierarchy L(R) is the result of starting with R and iterating the definable
powerset operation along the ordinals; more precisely, we let L0(R) = Vω+1,
Lα+1(R) = Def(Lα(R)), Lλ(R) =

⋃
α<λ Lα(R) for limit ordinals λ, and, fi-

nally,

L(R) =
⋃

α∈On

Lα(R).

We are interested in the sets of (k-tuples of) reals appearing in this hierarchy,
that is, P((ωω)k) ∩ Lα(R) for α ∈ On. Notice that in the definition of
the projective sets, complementation corresponds to negation and projection
corresponds to existential quantification over real numbers. It follows that
the projective sets of (k-tuples of) reals are exactly P((ωω)k)∩L1(R). Thus,
the hierarchy of sets P((ωω)k) ∩ Lα(R) (for α ∈ On) does indeed yield a
transfinite extension of the projective sets.

One can pass beyond the above hierarchy of sets of reals by considering

14We shall not discuss the details but let us note that the result is that the ∆0
1 sets

coincide with the recursive sets and the lightface version of the Borel hierarchy coincides
with the hyperarithmetical hierarchy.
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richer notions of definability. We shall say little about these stages, except
to note that there are natural limits to the lightface and boldface hierarchy,
namely that of being definable from ordinal parameters (OD) and that of
being definable from ordinal parameters and real numbers (OD(R)). To see
that the notion of ordinal definability is a limiting case of the lightface hier-
archy notice first that any notion of definability which does not render all of
the ordinals definable can be transcended (as can be seen by considering the
least ordinal which is not definable according to the notion) and second that
the notion of ordinal definability cannot be so transcended (since by reflec-
tion OD is ordinal definable). (Similar considerations apply to the boldface
hierarchy.) It is for this reason that Gödel proposed the notion of ordinal
definability as a candidate for an “absolute” notion of definability. As a lim-
iting case of the lightface and boldface hierarchy we therefore have the sets
of reals that are OD and the sets of reals that are OD(R), respectively.

2.2.2 Regularity Properties

There are many properties shared by “well-behaved” sets of reals. These are
called regularity properties. We shall concentrate on the three most central
regularity properties—the perfect set property, the property of Baire, and
Lebesgue measurability.

A set of reals is perfect iff it is nonempty, closed and contains no iso-
lated points. The key feature of this for our purposes is that if a set of reals
contains a perfect subset then it must have the same size as the continuum
(i.e. the reals). A set of reals is said to have the perfect set property iff it is
either countable or contains a perfect subset. The interest of this property
is that the sets of reals with the perfect set property satisfy CH. In early
work, Cantor and Bendixson established (in 1883) that all closed sets have
the perfect set property. Thus, there is no closed counter-example to the
continuum hypothesis. Later, in 1903, Young showed that the Π

∼

0
2 sets have

the perfect set property. A central question was how far this property prop-
agates. Do all of the Borel sets of reals have the perfect set property? Do all
of the projective sets of reals have the perfect set property?

A set of reals is nowhere dense iff its closure under limits contains no
open sets. A set of reals is meager iff it is the countable union of nowhere
dense sets. Finally, a set of reals A has the property of Baire iff it is “almost
open” in the sense that there is an open set O such that the region where O
and A do not overlap (that is, the symmetric difference (O −A) ∪ (A− O))
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is meager. It is straightforward to show that all Borel sets have the property
of Baire. Do all of the projective sets have the property of Baire?

The property of Lebesgue measurability is familiar from analysis and here
we shall be more brief. To begin with, one introduces a probability measure
over sets of reals. A set of reals is null iff it has measure zero. A set of reals
A is Lebesgue measurable iff it is “almost Borel” in the sense that there is a
Borel set B such that the region where B and A do not overlap is null. The
interest of this notion can perhaps be best brought out by recalling a theorem
of Banach and Tarski. Banach and Tarski showed that it is possible to cut
the unit sphere into finitely many pieces, and shift those pieces around (using
only translations and rotations) to bring them back together into a sphere
of twice the size. This requires a key application of the Axiom of Choice. It
is immediate that such pieces cannot be Lebesgue measurable. The question
is “How complex must such pieces be?” and this amounts to the question
“Which sets are Lebesgue measurable?” It is clear that the Borel sets are
Lebesgue measurable. Are the projective sets Lebesgue measurable?

In all three cases it is straightforward to use the Axiom of Choice to show
that there are sets of reals without the regularity property. The question is
whether all definable sets of reals have these properties.

2.2.3 Structural Properties

There are many structural properties connected with sets of reals—the uni-
formization property, the separation property, the prewellordering property,
the basis property, the existence of scales, Suslin cardinals, the existence of
homogeneous representations, etc. We shall concentrate on just one such
property—the uniformization property.

Let A and B be subsets of the plane (ωω)2. A uniformizes B iff A ⊆
B and for all x ∈ ωω, there exists y such that 〈x, y〉 ∈ B iff there is a
unique y such that 〈x, y〉 ∈ A. In other words, A yields a choice function
for B. Using AC it is clear that every set B has a uniformizing set A.
However, the question of whether uniformizations exist becomes interesting
when one imposes a definability constraint. Let Γ be a collection of (k-tuples
of) sets of reals. Such a class is called a pointclass. The pointclass Γ has
uniformization property (Unif(Γ)) iff every subset of the plane that is in Γ
admits a uniformization that is also in Γ.
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2.3 Classical Results

During the early 20th century there were many advances by the French and
Russian analysts in establishing that definable sets had the above regularity
and structural properties. We shall limit our discussion to the crowning
achievements:

Theorem 2.1 (Luzin, Suslin, 1917). Assume ZFC. The Σ
∼

1
1 sets have the

perfect set property, the property of Baire, and are Lebesgue measurable.

Notice that the property of Baire and Lebesgue measurability have the
feature that if they hold of A then they hold of the complement of A. How-
ever, the perfect set property does not have this feature. It remained open
whether all Π

∼

1
1 sets have the perfect set property and whether all Σ

∼

1
2 sets

have the property of Baire and are Lebesgue measurable.

Theorem 2.2 (Kondô, 1937). Assume ZFC. Then Unif(Σ
∼

1
2) holds.

It remained open whether all sets of reals in Π
∼

1
2, Σ∼

1
3, etc. have the uni-

formization property.

2.4 Limitative Results

It proved difficult to extend the above results to higher pointclasses, so much
so that in 1925 Luzin said that “one will never know” whether all of the
projective sets of reals have the regularity properties.

We now know the reason for the difficulties—the early analysts were work-
ing in ZFC and the above questions cannot be resolved on the basis of ZFC
alone. It is a testament to the power of the early analysts that they ob-
tained the strongest results that were within the reach of their background
assumptions.

The independence of the above statements follows from the dual tech-
niques of inner model theory (invented by Gödel in 1938) and outer model
theory (invented by Cohen in 1963).

The first half was established by Gödel and Addison:

Theorem 2.3 (Gödel). Assume ZFC + V=L. Then there are Σ
∼

1
2 sets that

do not have the property of Baire and are not Lebesgue measurable and there
are Π

∼

1
1 sets that do not have the perfect set property.
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Theorem 2.4 (Addison, 1959). Assume ZFC + V=L. Then for all n > 2,
Unif(Σ

∼

1
n).

It follows that (assuming that ZFC is consistent), ZFC cannot prove that Σ
∼

1
2

sets have the property of Baire and are Lebesgue measurable, that Π
∼

1
1 sets

have the perfect set property, and that Unif(Σ
∼

1
n) fails for n > 2. It remained

open whether ZFC could establish the negations.
The second half was established by Martin, Solovay and Levy:

Theorem 2.5 (Solovay, 1965). Assume ZFC and that there is a strongly
inaccessible cardinal. Then there is a forcing extension in which all projective
sets have the perfect set property, the property of Baire and are Lebesgue
measurable.

The strongly inaccessible cardinal is necessary for the perfect set property
(even for Π

∼

1
1 sets (Solovay)) and Lebesgue measurability (Shelah) but not

for the property of Baire (Shelah). However, Martin and Solovay showed in
1970 that if ZFC is consistent then so is ZFC along with the statement that
all Σ1

2 sets have the property of Baire and are Lebesgue measurable.

Theorem 2.6 (Levy, 1965). Assume ZFC. Then there is a forcing extension
in which Unif(Π

∼

1
2) fails.

In fact, Levy noted that this is the case in the original model introduced by
Cohen.

Putting everything together we have the following: (1) If ZFC is consis-
tent, then ZFC cannot determine whether all Σ

∼

1
2 sets have the property of

Baire and are Lebesgue measurable. (2) If ZFC + “There is a strongly inac-
cessible cardinal” is consistent, then ZFC cannot determine whether all Π

∼

1
1

sets have the perfect set property. (3) If ZFC is consistent, then ZFC cannot
determine the pattern of the uniformization property; more precisely, it is
consistent with ZFC that the uniformization property has either the pattern

Π
∼

1
3 Π

∼

1
4Π

∼

1
2Π

∼

1
1

Σ
∼

1
3 Σ

∼

1
4

. . .Σ
∼

1
1 Σ

∼

1
2

Figure 1: Uniformization under V=L.
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or the pattern

Σ
∼

1
1 Σ

∼

1
2 Σ

∼

1
3

Π
∼

1
3 Π

∼

1
4Π

∼

1
2Π

∼

1
1

Σ
∼

1
4

. . .

Figure 2: Uniformization in the Cohen model.

Further Reading : For more on the history of classical descriptive set theory
see Kanamori (1995). For more on the mathematics of classical descriptive
set theory see sections 12 and 13 of Kanamori (2003), Kechris (1995), and
Moschovakis (1980).

3 Determinacy and Large Cardinals

The above limitative results show that ZFC lacks sufficient power to resolve
many questions about simple definable sets of reals—it cannot determine
whether Σ

∼

1
2 sets have the regularity properties and it cannot determine the

pattern of the uniformization property beyond Σ
∼

1
2. This placed mathemati-

cians in an interesting predicament. In order to resolve these questions they
must expand their resources beyond ZFC. But there are many ways of doing
this and it is unclear at the outset whether there is a correct direction of
expansion.

There were two main candidates for new axioms that underwent intensive
investigation in the 1970s and 1980s: Axioms of definable determinacy and
large cardinal axioms. In this section we will (1) introduce the basic ma-
chinery of determinacy and describe the implications of axioms of definable
determinacy for classical descriptive set theory and (2) describe the implica-
tions of large cardinal axioms for classical descriptive set theory and briefly
touch on the connection between the two approaches.
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3.1 Determinacy

For a set of reals A ⊆ ωω consider the game where two players take turns
playing natural numbers:

I x(0) x(2) x(4) . . .

II x(1) x(3) . . .

At the end of a round of this game the two players will have produced a
real x, obtained through “interleaving” their plays. We say that Player I
wins the round if x ∈ A; otherwise Player II wins the round. The set A is
said to be determined if one of the players has a “winning strategy” in the
associated game, that is, a strategy which ensures that the player wins a
round regardless of how the other player plays. The Axiom of Determinacy
(AD) is the statement that every set of reals is determined. This axiom was
introduced by Mycielski and Steinhaus in 1962.

It is straightforward to see that very simple sets are determined. For
example, if A is the set of all reals then clearly I has a winning strategy;
if A is empty then clearly II has a winning strategy; and if A is countable
then II has a winning strategy (by “diagonalizing”). This might lead one to
expect that all sets of reals are determined. However, it is straightforward to
use the Axiom of Choice (AC) to construct a non-determined set (by listing
all winning strategies and “diagonalizing” across them). For this reason AD
was never really considered as a serious candidate for a new axiom. However,
there is an interesting class of related axioms that are consistent with AC,
namely, the axioms of definable determinacy. These axioms extend the above
pattern by asserting that all sets of reals at a given level of complexity are
determined, notable examples being ∆

∼

1
1-determinacy (all Borel sets of reals

are determined), PD (all projective sets of reals are determined) and ADL(R)

(all sets of reals in L(R) are determined).
One issue is whether these are really new axioms or whether they follow

from ZFC. One of the earliest results in the subject (due to Gale and Stewart
in 1953) is that (in ZFC) all Π

∼

0
1 (that is, closed) games are determined. This

result was extended to the next few levels of the Borel hierarchy. Finally,
in 1974, Martin proved the landmark result that ∆

∼

1
1-determinacy is provable

in ZFC. It turns out that this result is close to optimal—as one climbs
the hierarchy of definability, shortly after ∆

∼

1
1 one arrives at axioms that fall

outside the provenance of ZFC. For example, this is true of Π
∼

1
1-determinacy,

PD and ADL(R). Thus, we have here a hierarchy of axioms (including PD

25



and ADL(R)) which are genuine candidates for new axioms.
For a pointclass Γ of (k-tuples of) sets of reals, let Det(Γ) be the statement

that all sets of reals in Γ are determined. In what follows we shall assume that
Γ has certain minimal closure properties; more precisely, we shall assume that
Γ is an adequate pointclass in the sense of Moschovakis (1980). The precise
details of this notion are not important for our purposes; suffice it to say that
all of the pointclasses introduced thus far are adequate.

Theorem 3.1 (Banach, Mazur, Oxtoby, 1957). Assume ZFC+Det(Γ). Then
the sets of reals in Γ have the property of Baire.

Theorem 3.2 (Mycielski-Swierczkowski, 1964). Assume ZFC+Det(Γ). Then
the sets of reals in Γ are Lebesgue measurable.

Theorem 3.3 (Davis, 1964). Assume ZFC + Det(Γ). Then the sets in Γ
have the perfect set property.

In particular, if one assumes PD then all projective sets of reals have the
regularity properties and if one assumes ADL(R) then all of the sets of reals
in L(R) have the regularity properties.

In fact by modifying the above proofs one can obtain the regularity prop-
erties for a larger pointclass, namely, ∃RΓ. This is the pointclass obtained
by taking projections of sets in Γ. So, for example, if Γ is ∆

∼

1
1 then ∃RΓ is

Σ
∼

1
1. It follows that assuming ∆

∼

1
1-determinacy (which is provable in ZFC)

one gets that the Σ
∼

1
1 sets of reals have the regularity properties.15 In this

sense determinacy lies at the heart of the regularity properties and may be
considered their true source.

The above results show that axioms of definable determinacy extend the
results on regularity properties that can be proved in ZFC. ZFC can establish
that all Σ

∼

1
1 sets of reals have the regularity properties and ∆

∼

1
1-determinacy

(a theorem of ZFC) lies at the heart of this result. The extension of ∆
∼

1
1-

determinacy to stronger forms of definable determinacy (PD, ADL(R), etc.)
generalizes these results by extending the regularity properties to the corre-
sponding pointclasses (projective, in L(R), etc.)

In a similar fashion, axioms of definable determinacy extend the results
on the uniformization property.

Theorem 3.4 (Moschovakis, 1971). Assume ZFC+Det(∆
∼

1
2n). Then Unif(Π

∼

1
2n+1)

and Unif(Σ
∼

1
2n+2).

15See the exercises in 6.G of Moschovakis (1980).
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Thus, under PD the uniformization property has the following pattern:

Σ
∼

1
1 Σ

∼

1
2 Σ

∼

1
3 Σ

∼

1
4

Π
∼

1
3 Π

∼

1
4Π

∼

1
2Π

∼

1
1

. . .

Figure 3: Uniformization under PD.

This pattern recurs at higher levels under stronger forms of determinacy.
For example, under ADL(R) the pattern recurs throughout the transfinite
extension of the projective sets within L(R). For all of L(R) one has:

Theorem 3.5 (Martin-Steel, 1983). Assume ZFC+ADL(R). Then in L(R),
Σ
∼

2
1 has the uniformization property.

(Here Σ
∼

2
1 is defined just as (the logical version) of Σ

∼

1
1 except that now the

initial quantifier ranges over sets of reals and not just reals (as is indicated
by the superscript).)

Moreover, the uniformization property is not an isolated case. The same
pattern holds for other properties, such as the prewellordering property and
the scale property.

3.2 Large Cardinals

The second approach to new axioms—which ran in parallel to the approach
using definable determinacy—was to invoke large cardinal axioms. In fact,
it was gradually shown (as Solovay had conjectured in the late 1960s) that
large cardinal axioms actually imply forms of definable determinacy.

The result that underscored the significance of large cardinal axioms for
the structure theory of simply definable sets of reals is the following early
result of Solovay:

Theorem 3.6 (Solovay, 1965). Assume ZFC and that there is a measurable
cardinal. Then all Σ

∼

1
2 sets of reals have the perfect set property, the property

of Baire, and are Lebesgue measurable.
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Given that Π
∼

1
1-determinacy implies the regularity properties for Σ

∼

1
2 sets

of reals (see the discussion after Theorems 3.1–3.3), it was reasonable to
suspect that a measurable cardinal actually implied Π

∼

1
1-determinacy. This

was established by Martin:

Theorem 3.7 (Martin, 1970). Assume ZFC and that there is a measurable
cardinal. Then Π

∼

1
1-determinacy holds.

Since definable determinacy lay at the heart of the structure theory, much
of the energy was focused on trying to show that it followed from large
cardinal axioms. The next major advance was made in 1978.

Theorem 3.8 (Martin, 1978). Assume ZFC and that there is a non-trivial
elementary embedding j : Vλ+1 → Vλ+1. Then Π

∼

1
2-determinacy holds.

(Martin actually used a somewhat weaker assumption but it is somewhat
technical and it would not be illuminating to state it here.)

In early 1979, Woodin extended this by showing that PD follows from
much stronger large cardinal hypotheses. To describe this, let us introduce
some terminology: Suppose j : Vλ+1 → Vλ+1 is a non-trivial elementary
embedding. Let κ0(j) be the critical point of j and for each n let κn+1(j) =
j(κn(j)). Let κw(j) = supn<ω κn(j). (Notice that j(κω(j)) = κω(j).) A
sequence of embeddings j0, . . . , jn is an n-fold strong rank to rank embedding
sequence if there exists a λ such that

(1) for each i ≤ n,
ji : Vλ+1 → Vλ+1

is a non-trivial elementary embedding and

(2) for each i < n,
κω(ji) < κω(ji+1).

Theorem 3.9 (Woodin, 1979). Assume ZF. For each n < ω, if there is an
n-fold strong rank to rank embedding sequence then Π

∼

1
n+2-determinacy holds.

So PD follows from the assumption that for each n, there is an n-fold strong
rank to rank embedding sequence.

The interesting thing about these large cardinal hypotheses is that for
n > 0 they are inconsistent with AC (by a result of Kunen). Moreover, there
is now reason to believe that for n > 0 they are outright inconsistent (in ZF).
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See Woodin (2011). Should this turn out to be the case it would be rather
interesting since it would be a case where one derived structure theory from
an inconsistency without awareness of the inconsistency.

Fortunately, in December of 1983 Woodin both strengthened the conclu-
sion and reduced the large cardinal hypothesis to one that is not known to
be inconsistent with AC:

Theorem 3.10 (Woodin, 1984). Assume ZFC and that there is a non-trivial
elementary embedding j : L(Vλ+1) → L(Vλ+1) with critical point less than λ.
Then ADL(R) holds.

In fact, Woodin got much more definable determinacy than ADL(R).
Still, the large cardinal assumption was thought to be too strong. At this

point the episode of history described earlier—the one involving Solovay’s
theorem of 1965 and Martin’s theorem of 1970—repeated itself. For in 1984
Woodin showed that if there is a supercompact cardinal then all projective
sets have the regularity properties. In joint work with Shelah, the hypothesis
was significantly reduced.

Theorem 3.11 (Shelah-Woodin, 1984). Assume ZFC and that there are
n Woodin cardinals with a measurable cardinal above them all. Then the
Σ
∼

1
n+2 have the perfect set property, the property of Baire, and are Lebesgue

measurable.

As in the earlier episode, this suggested that the above large cardinal
hypothesis actually implied Π

∼

1
n+1-determinacy. This was soon established by

a landmark result of Martin and Steel.

Theorem 3.12 (Martin-Steel, 1985). Assume ZFC and that there are n

Woodin cardinals with a measurable cardinal above them all. Then Π
∼

1
n+1-

determinacy holds.

Finally, in combination with Woodin’s work on the stationary tower, the
following result was established.

Theorem 3.13 (Martin, Steel, and Woodin, 1985). Assume ZFC and that
there are ω many Woodin cardinals with a measurable cardinal above them
all. Then ADL(R) holds.

In this way the two approaches to new axioms—via axioms of definable
determinacy and via large cardinal axioms—were shown to be closely related.
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In fact, in subsequent work it was shown that the connections are much
deeper. But to fully appreciate this we must first introduce the machinery
of inner model theory.

Further Reading : For more on determinacy see sections 27–32 of Kanamori
(2003) and Moschovakis (1980). For further details concerning the structure
theory provided by determinacy see the volumes of the Cabal Seminar and
Jackson (2010).

4 The Case for Definable Determinacy

We are now in a position to discuss aspects of the case that has been made
for axioms of definable determinacy.

4.1 Basic Notions

Let us stress from the beginning that because of the incompleteness theorems
the case for any new axiom is going to have to be delicate. The standard
way of establishing a proposition in mathematics is by proving it within some
accepted set of axioms. However, the axioms implicitly accepted by mathe-
maticians in everyday practice seem to be exhausted by those of ZFC, and
we are here dealing with questions and new axioms that are beyond the reach
of ZFC. Given the nature of the case, it seems unlikely therefore that one
will have a knock-down argument for new axioms. Instead it seems that the
most that one can hope for is to accumulate evidence until eventually the case
becomes compelling. The other alternative is that the case remains divided
between two equally compelling but mutually inconsistent approaches.

Let us first say something very general about how such a case might
proceed. Some propositions have a certain degree of intrinsic plausibility.
For example, the statement that there is no paradoxical decomposition of
the sphere using pieces that are Σ

∼

1
2 is intrinsically plausible, although it is

not provable in ZFC. Such initial support for a proposition is not definitive.
For example, the statement that there are no space filling curves and the
statement that there is no paradoxical decomposition of the sphere using
any pieces whatsoever might have once seemed intrinsically plausible. But
in each case these statements were overturned by theorems proved against
the backdrop of systems that had much more than this degree of initial
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plausibility in their favour. However, although such intrinsic plausibility is
not definitive, it nevertheless has some weight.

Moreover, the weight can accumulate. Suppose we have two statements
from conceptually distinct domains that are intrinsically plausible—for ex-
ample, one might concern the existence of (inner models of) large cardinal
axioms and the other might concern the regularity properties of simply de-
finable sets. If it is shown that the first implies the second then the second
inherits the initial plausibility attached to the first. Should the two state-
ments ultimately be shown to imply one another this would strengthen the
case for each. The hope is that through the accumulation of mathematical
results—theorems proved in first-order logic, which are matters upon which
everyone can agree—various independent intrinsically plausible statements
will come to reinforce each other to the point where the case as a whole
becomes compelling.

Some have maintained that this is actually the situation with axioms of
definable determinacy and large cardinal axioms. In the remainder of this
section we shall present the case in the strongest way we know how.

Further Reading : For more on the notion of intrinsic plausibility and how it
figures in the structure of reason, see Chapter 9 of Parsons (2008).

4.2 Structure Theory

For definiteness, when we speak of the “structure theory” (at a given level) we
shall be referring to the regularity properties introduced above—the perfect
set property, and the property of Baire, and Lebesgue measurability—along
with the uniformization property. There is actually much more (as indicated
above) to the structure theory and what we shall have to say generalizes. We
shall concentrate on two levels of definable determinacy—∆

∼

1
1-determinacy

and ADL(R). Again, this is just for definiteness and what we shall have to
say generalizes to certain higher forms of definable determinacy.

The axiom ∆
∼

1
1-determinacy (equivalently, Borel-determinacy) is a theo-

rem of ZFC and lies at the heart of the structure theory of Borel sets (and,
in fact, the Σ

∼

1
1-sets and Σ

∼

1
2 sets). One virtue of ADL(R) is that it lifts this

entire structure theory from the Borel sets to the sets in L(R). Summarizing
results from above we have:

Theorem 4.1. Assume ZFC+ADL(R). Then every set of reals in L(R) has
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the perfect set property, the property of Baire, is Lebesgue measurable, and
Σ2

1-uniformization holds in L(R).

Many descriptive set theorists take these consequences to be intrinsi-
cally plausible. Moreover, they have found the particular pattern of the
uniformization property provided by ADL(R) to be a plausible extension of
the pattern initiated in ZFC. For this last point consider the first ω many
levels and compare the case of V=L with that of PD. In ZFC, the uni-
formization property propagates from Π

∼

1
1 to Σ

∼

1
2. It is natural to expect it to

continue to zig-zag back and forth. However, under V=L it stabilizes:

Π
∼

1
3 Π

∼

1
4Π

∼

1
2Π

∼

1
1

Σ
∼

1
3 Σ

∼

1
4

. . .Σ
∼

1
1 Σ

∼

1
2

Figure 4: Uniformization under V=L.

In contrast, PD provides what appears to be the correct extrapolation:

Σ
∼

1
1 Σ

∼

1
2 Σ

∼

1
3 Σ

∼

1
4

Π
∼

1
3 Π

∼

1
4Π

∼

1
2Π

∼

1
1

. . .

Figure 5: Uniformization under PD.

Again, this “periodicity phenomenon” occurs at higher levels in L(R).
One might grant that these are indeed fruitful consequences of ADL(R) and

as such are evidence that ADL(R) holds. However, one might be concerned
that perhaps there are axioms that share these fruitful consequences and
yet are incompatible with ADL(R). As a response, one might note that this
objection is never raised in the analogous case of physics where a multitude
of incompatible theories can agree in their empirical consequences. But there
is a much stronger response that one can make. For in contrast to the case of
physics—where one could never hope to show that there was only one theory
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with the desired empirical consequences—in set theory this is actually the
case; more precisely, any theory that has these fruitful consequences—that
is, which lifts the structure theory to the level of L(R)—must imply ADL(R).
This remarkable fact is embodied in the following theorem:

Theorem 4.2 (Woodin). Assume that all sets in L(R) are Lebesgue measur-
able, have the property of Baire, and that Σ2

1-uniformization holds in L(R).
Then ADL(R).

Summary: There is a “good theory” (one that lifts the structure theory)
and all good theories imply ADL(R).

4.3 Large Cardinals

Large cardinal axioms are taken (by those who study them) to have certain
degrees of intrinsic plausibility. As we noted above, large cardinal axioms
imply forms of definable determinacy and so the latter inherit the consider-
ations in favour of the former.

Theorem 4.3 (Martin, Steel, and Woodin). Assume ZFC and that there are
ω many Woodin cardinals with a measurable above them all. Then ADL(R).

In fact, it turns out that the existence of certain inner models of large
cardinal axioms is sufficient to prove definable determinacy. Since it is (ar-
guably) even more plausible that there are such inner models, this (arguably)
strengthens the case. So definable determinacy is a fruitful consequence of
the existence of such inner models.

However, just as in the previous subsection, one would like some assurance
that there are not incompatible axioms that share this fruitful consequence.
Remarkably, this turns out to be the case—axioms of definable determinacy
are actually equivalent to axioms asserting the existence of inner models of
large cardinals. We discuss what is known about this connection, starting
with a low level of boldface definable determinacy and proceeding upward. It
should be emphasized that our concern here is not merely with consistency
strength but rather with outright equivalence (over ZFC).16

16Inner model theory is a very advanced subbranch of set theory and we will not be able
to describe it in any detail here. Suffice it to say that the goal of inner model theory is
to find “L-like” models that can contain large cardinals. In the results below Mω is the
canonical inner model for ω-many Woodin cardinals and M

#
ω

is the “sharp” of this model.
For a more detailed discussion of these results see Koellner & Woodin (2010).
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Theorem 4.4 (Woodin). The following are equivalent :

(1) ∆
∼

1
2-determinacy.

(2) For all x ∈ ωω, there is an inner model M such that x ∈ M and
M |= “There is a Woodin cardinal”.

Theorem 4.5 (Woodin). The following are equivalent :

(1) PD (Schematic).

(2) For every n < ω, there is a fine-structural, countably iterable inner
model M such that M |= “There are n Woodin cardinals”.

Theorem 4.6 (Woodin). The following are equivalent :

(1) ADL(R).

(2) In L(R), for every set S of ordinals, there is an inner model M and an

α < ω
L(R)
1 such that S ∈M and M |= “α is a Woodin cardinal ”.

Theorem 4.7 (Woodin). The following are equivalent :

(1) ADL(R) and R# exists.

(2) M#
ω exists and is countably iterable.

Theorem 4.8 (Woodin). The following are equivalent :

(1) For all B, V B |= ADL(R).

(2) M#
ω exists and is fully iterable.

Summary: Large cardinal axioms are sufficient to prove definable de-
terminacy and inner models of large cardinal axioms are necessary to prove
definable determinacy. In fact, through a series of deep results, these two
conceptually distinct approaches to new axioms are ultimately seen to be at
root equivalent.
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4.4 Generic Absoluteness

Large cardinal axioms have the fruitful consequence that they imply axioms
of definable determinacy and hence illuminate the structure theory of defin-
able sets of reals. In fact, ADL(R) appears to be “effectively complete” with
regard to questions concerning L(R). Let us try to make this precise in terms
of generic absoluteness.

The motivating result in this area is the following:

Theorem 4.9 (Shoenfield). Assume ZFC. Suppose ϕ is a Σ1
2 sentence and

B is a complete Boolean algebra. Then

V |= ϕ iff V B |= ϕ.

In other words, the Σ1
2-theory cannot be altered by the method of outer mod-

els. In such a situation we say that ϕ is generically absolute. Since our main
method of establishing independence (without leaving an interpretability de-
gree) is the method of outer models, this explains why there are no known
Σ1

2 statements that lie in the interpretability degree of ZFC and are known
to be independent of ZFC.

A fruitful consequence of large cardinal axioms is that they place us in
exactly this situation with regard to a much larger class of statements.17

Theorem 4.10 (Woodin). Assume ZFC and that there is a proper class of
Woodin cardinals. Suppose ϕ is a sentence and B is a complete Boolean
algebra. Then

L(R)V |= ϕ iff L(R)V
B

|= ϕ.

In this situation one, of course, has ADL(R). Again, one might be con-
cerned that one can have this fruitful consequence without having ADL(R).
This is addressed by the following theorem:

Theorem 4.11 (Woodin). Assume ZFC and that there is a proper class of
strongly inaccessible cardinals. Suppose that the theory of L(R) is generically
absolute. Then ADL(R).

Summary: There is a “good theory” (one that freezes the theory of
L(R)) and (granting a proper class of strongly inaccessible cardinals) all
good theories imply ADL(R).

17See Larson (2004) for an account of this result.
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4.5 Overlapping Consensus

We have discussed two recovery results for ADL(R). First, ADL(R) is implied
by its structural consequences (Theorem 4.2). Second, ADL(R) is recovered by
the generic absoluteness that follows from large cardinals that imply ADL(R)

(Theorem 4.11).
These recovery results are not isolated occurrences. The technique used

to establish them is known as the core model induction. This technique
has been used to show that many other strong theories imply ADL(R). This
even holds for theories that are incompatible with one another. For example,
consider the following:

Theorem 4.12. (Woodin) Assume ZFC+ there is an ω1-dense ideal on ω1.
Then ADL(R).

Theorem 4.13. (Steel) Assume ZFC + PFA. Then ADL(R).

These two theories are incompatible. There are many other examples. In
fact, the examples are so ubiquitous and the technique is so general that
there is reason to believe that ADL(R) lies in the overlapping consensus of all
sufficiently strong, natural theories.

Summary: ADL(R) lies in the overlapping consensus of numerous strong
theories and so it inherits the considerations of each. Moreover, there is rea-
son to believe that ADL(R) lies in the overlapping consensus of all sufficiently
strong, “natural” theories.

4.6 Beyond L(R)

Much of the above case can be pushed even beyond L(R). To explain this
we will need to introduce the notion of a universally Baire set of reals.

For a cardinal δ, a set A ⊆ R is δ-universally Baire if for all partial orders
P of cardinality δ, there exist trees S and T on ω× λ (for some λ) such that
A = p[T ] and, if G ⊆ P is V -generic, then p[T ]V [G] = RV [G] − p[S]V [G]. A
set A ⊆ R is universally Baire if it is δ-universally Baire for all δ. The key
point is that universally Baire sets have canonical interpretations in generic
extensions V [G]. Let Γ∞ be the collection of sets of reals that are universally
Baire. This collection has strong closure properties. For example, Woodin
showed that if there is a proper class of Woodin cardinals and A ∈ Γ∞ then
(1) L(A,R) |= AD+ and (2) P(R)∩L(A,R) ⊆ Γ∞. Here AD+ is a (potential)
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strengthening of AD designed for models of the form L(P(R)). See Woodin
(1999).

For κ an infinite regular cardinal, let H(κ) be the set of all sets x such
that the cardinality of the transitive closure of x is less than κ.

Theorem 4.14. (Woodin) Suppose there is a proper class of Woodin car-
dinals and A ∈ Γ∞. Suppose G ⊆ P is V -generic. Then

(H(ω1),∈, A)
V ≺ (H(ω1)

V [G],∈, AG).

That is, we have generic absoluteness for “projective-in-A” where A is uni-
versally Baire. In fact, one has “Σ2

1(Γ
∞)-generic absoluteness”:

Theorem 4.15. (Woodin) Suppose there is a proper class of Woodin car-
dinals and let ϕ be a sentence of the form

∃A ∈ Γ∞ (H(ω1),∈, A) |= ψ.

Suppose G ⊆ P is V -generic. Then

V |= ϕ iff V [G] |= ϕ.

Stronger large cardinal axioms imply that many sets of reals beyond L(R)
are universally Baire. Let us call a set absolutely ∆2

1 if there are Σ
2
1 formulas

which define complementary sets of reals in all generic extensions. Woodin
showed that if there is a proper class of measurable Woodin cardinals then
all absolutely ∆2

1 sets of reals are universally Baire.18 This is one precise
sense in which CH was an unfortunate choice of a test case for the program
for large cardinals—large cardinal axioms effectively settle all questions of
complexity strictly below (in the above sense) that of CH.19

4.7 Summary

Each of the above arguments has two parts. In the first part, one argues that
there is a “good” theory (one having certain fruitful consequences). In many

18Under the same hypothesis one has that all of the “provably-∆2
1” sets of reals are

universally Baire.
19One might worry that what is really going on here is that large cardinal axioms throw

a wrench into the forcing machinery. But this is not so. Under large cardinal assumptions
one has more generic extensions. What is really going on is that large cardinal axioms
generate trees that are robust and act as oracles for truth.
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cases this theory explicitly includes (or just is) ADL(R). In the second part,
one shows that all such theories include ADL(R).

We want to stress this second part—the recovery theorems. Without the
recovery theorems one could always wonder whether there are incompatible
axioms with the same fruitful consequences. In contrast to the case of physics,
where one could never hope to show that the data logically implies the theory,
in the case of the search for new axioms this is in fact possible. It is the
recovery theorems that seal the case.

Perhaps the strongest argument in favour of axioms of definable determi-
nacy is the last. For the results show that there are deep connections between
approaches to new axioms from conceptually distinct domains and that, re-
markably, ADL(R) is part of the picture provided by each. In short, ADL(R)

lies in the overlapping consensus of all approaches that involve climbing the
hierarchy of interpretability along a natural path.

Further Reading : For more on the topics of this section see Koellner (2006),
Koellner (2009b), Maddy (1988a), Maddy (1988b), Martin (1998), Steel
(2000), Woodin (2001a), Woodin (2001b), Woodin (2005b), and Woodin
(2005a).

5 Philosophical Discussion

Let us return to the question of pluralism. Do the above results collectively
provide us with a strong extrinsic justification of ADL(R) and thereby secure
non-pluralism at this level?

The pluralist will certainly accept the above results—after all, they are
mathematical theorems—but will resist the claim that they provide us with
theoretical reasons for adopting ADL(R). The pluralist may grant that the
results are quite interesting and that they show that ADL(R) has a certain
appeal—since, for example, it renders L(R) a paradise for analysts—but
they will view this as a practical reason for adopting ADL(R), not a theoretical
reason. On this view there are many roads that one can take—V=L, ADL(R),
etc.—and that while each has its advantages with respect to certain aims
there is no “fact of the matter” as to which is the correct one, any more than
there is a “fact of the matter” as to which of two notations is the correct
notation. At this level, according to the pluralist, no theoretical reasons are
at play and there is no issue of objective mathematical truth. This is the
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view of Feferman (1999), Kanamori (2003), Shelah (2003), and many other
philosophers and mathematicians.

The non-pluralist regards the above results as collectively providing very
strong theoretical reasons for thinking that ADL(R) holds and that the other,
incompatible alternatives fail. This is the view of Martin (1998), Steel (2000),
Woodin (2005a), many philosophers and mathematicians, and most descrip-
tive set theorists and inner model theorists.

As we mentioned in the introduction, some pluralists and non-pluralists
take realism to be prior to reason while others take reason to be prior to
realism. It is important to keep these two versions separate and address
them individually.

Let us start with those who take realism to be prior to reason. To fix
ideas consider the pluralist who accepts realism about the natural numbers
but not about arbitrary subsets of natural numbers and then, on this basis,
concludes that theoretical reasons can be offered in the case of new axioms
in number theory but not in the case of analysis or set theory. When pressed
on the source of this asymmetrical stance concerning realism in the two
domains the pluralist usually responds by resorting to the intuition that the
natural numbers are “clear” while the notion of an arbitrary subset of natural
numbers is “inherently vague”. To this the non-pluralist might respond that
the notion of clarity is not clear. Intuitions of clarity, like intuitions of self-
evidence, are notoriously vague and subjective and hence a weak point upon
which to rest one’s case.

Let us now turn to those who take reason to be prior to realism. People
in this category take objectivity to be the hallmark of realism and they
come to their conclusions concerning realism about a given domain only
after one has a good understanding of what kind of theoretical reasons have
traction in that domain. A pluralist who thinks that theoretical justification
in mathematics must ultimately trace back to axioms which are self-evident
will be unmoved by the above extrinsic case. Likewise for a pluralist who
thinks that theoretical justification in mathematics must ultimately trace
back to axioms that are extrinsically justified. The case we have given is
clearly an extrinsic one. The issue, then, comes down to the legitimacy of
extrinsic justifications.

We are certainly not in a position to resolve this debate here. But it will
be helpful to draw a parallel with the debate between the instrumentalist
and non-instrumentalist in physics. An extreme form of instrumentalism was
advanced by the neo-Kantian Hans Vaihinger in his book The Philosophy of
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As If (1911). According to this view, the “hard data” of physics consists
in the data of our immediate sense impressions. Upon this basis we are free
to construct—in common sense and in physics—a “reality”, but the result
is not genuine knowledge—rather, it is a useful fiction for moving around in
everyday life and making predictions in physics. In a similar fashion, the
extreme pluralist takes the “hard data” to consist of the theorems that have
actually been established and regards everything else as a useful fiction.

In the physical case the non-instrumentalist sees theoretical reason at
play at a much higher-level, far beyond the data. For example, in the time of
Copernicus, when the Ptolemaic and Copernican theory were observationally
indistinguishable, theoretical reasons could still be given for the Copernican
theory over the Ptolemaic theory.20 Similarly in the set theoretic case the
non-pluralist sees theoretical reason at play at higher level, beyond the the-
orems and the intrinsically plausible statements. Just as in astronomy the
non-instrumentalist finds evidence of a higher-level structure in the constel-
lation of connections, likewise in the case of set theory the non-pluralist
takes the constellation of connections in the interpretability hierarchy—in
particular, the above theorems concerning ADL(R)—as providing evidence of
structure of a higher level. There is, of course, much more to be said. But
we hope to have brought the issues to the fore.

It should be mentioned that the non-pluralist about ADL(R) is open to
the possibility that pluralism holds at higher levels, say at the level of CH.
For a treatment of that subject see the entry “The Continuum Hypothesis”.
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