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The independence results in arithmetic and set theory led to a proliferation
of mathematical systems. One very general way to investigate the space of
possible mathematical systems is under the relation of interpretability. Under
this relation the space of possible mathematical systems forms an intricate
hierarchy of increasingly strong systems. Large cardinal axioms provide a
canonical means of climbing this hierarchy and they play a central role in
comparing systems from conceptually distinct domains.

This article is an introduction to independence, interpretability, large
cardinals and their interrelations. Section 1 surveys the classic independence
results in arithmetic and set theory. Section 2 introduces the interpretability
hierarchy and describes some of its basic features. Section 3 introduces the
notion of a large cardinal axiom and discusses some of the central examples.
Section 4 brings together the previous themes by discussing the manner in
which large cardinal axioms provide a canonical means for climbing the hi-
erarchy of interpretability and serve as an intermediary in the comparison
of systems from conceptually distinct domains. Section 5 briefly touches on
some philosophical considerations.

1 Independence

Let us begin with the notion of an aziom system. To motivate this notion
consider the manner in which justification traditionally proceeds in mathe-
matics. In reasoning about a given domain of mathematics (or, in fact, any
domain) the question of justification is successively pushed back further and
further until ultimately one reaches principles that do not admit more fun-
damental justification. The statements at this terminal stage are elected as



axioms and the subject is then organized in terms of derivability from the
base of axioms. In the case of arithmetic this led to the axiom system PA
(Peano arithmetic) and in the case of set theory it led to the axiom system
ZFC (Zermelo-Frankel set theory with the Axiom of Choice).

Two natural questions arise: (1) If the axioms do not admit of more
fundamental justification then how does one justify them? (2) Is the base of
axioms sufficiently rich that one can settle every sentence on this basis?

There are two traditional views concerning the epistemological status of
axioms. On the first view the axioms do not admit further justification
since they are self-evident. On the second view the axioms do not admit
further justification since they are definitive of the subject matter. Each
of these views concerning our first question leads to an associated optimistic
view concerning our second question—-according to the first optimistic view,
all mathematical truths are derivable (in first-order logic) from self-evident
truths, while according to the second optimistic view, all mathematical truths
are derivable (in first-order logic) from statements that are definitive of the
subject matter. Should either of these optimistic views turn out to be correct,
then the question of justification in mathematics would take on a particularly
simple form: Either a statement would be an axiom (in which case it would
be self-evident or definitive of the subject matter (depending on the view
under consideration)) or it would be derivable in first-order logic from some
such statements.

Unfortunately, these optimistic views came to be challenged in 1931 by
Godel’s incompleteness theorems. Here is one version of the second incom-
pleteness theorem:

Theorem 1.1 (Godel, 1931). Assume that PA is consistent. Then PA does
not prove Con(PA).

Here Con(PA) is a statement of arithmetic that expresses the informal state-
ment that PA is consistent.! Under slightly stronger assumptions (for ex-
ample, that PA is ¥9-sound?) one can strengthen the conclusion by adding
that PA does not prove =Con(PA); in other words, under this stronger as-
sumption, Con(PA) is independent of PA. Thus, we have here a case of
a statement of arithmetic (and, in fact, a very simple one) that cannot be
settled on the basis of the standard axioms. Moreover, the theorem is com-
pletely general—it holds not just for PA but for any sufficiently strong formal
system T'.



This raises a challenge for the two aforementioned optimistic views con-
cerning the nature of mathematical truth. To begin with it shows that we
cannot work with a fized axiom system 7. We will always need to introduce
new axioms. More importantly, it raises the question of how one is to justify
these new axioms, for as one continues to add stronger and stronger axioms
the claim that they are either self-evident or definitive of the subject matter
will grow increasingly more difficult to defend.

Already in 1931 Godel pointed out a natural way to justify new axioms.
He pointed out that if one moves beyond the natural numbers and climbs the
hierarchy of types (the sets of natural numbers, the sets of sets of natural
numbers, etc.) one arrives at axioms (the axioms of second-order arithmetic
PA,, the axioms of third-order arithmetic PAs, etc.) that settle the unde-
cided statements that he discovered. The axiom system for the second level,
PA,, settles the statement left undecided at the first level, namely Con(PA);
in fact, PAy proves Con(PA), which is the desired result. But now we have a
problem at the second level. For the second incompleteness theorem shows
that (under similar background assumptions to those above) PAy does not
settle Con(PAy). Fortunately, the axiom system for the third level, PA3, set-
tles the statement left undecided at the second level, namely Con(PA,). This
pattern continues. For every problem there is a solution and for every solu-
tion there is a new problem. In this way, by climbing the hierarchy of types
one arrives at systems that successively settle the consistency statements
that arise along the way.

The above hierarchy of types can be recast in the uniform setting of set
theory. The set-theoretic hierarchy is defined inductively by starting with
the emptyset, taking the powerset at successor stages a + 1, and taking the
union at limit levels A:

Vo=90
Va+1 = P(Va)
V/\ = Ua<)\ VO‘

The universe of sets V' is the union of all such stages: V' = J,co, Va, Where
On is the class of ordinals. The first infinite level V, consists of all of the
hereditarily finite sets® and this level satisfies ZFC — Infinity. The sets at this
level can be coded by natural numbers and in this way one can show that
PA and ZFC — Infinity are mutually interpretable.* The second infinite level
V11 is essentially P(N) (or, equivalently, R) and this level satisfies (a theory
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that is mutually interpretable with) PAs. The third infinite level Vo is
essentially P(P(N)) (or, equivalently, as the set of functions of real numbers)
and this level satisfies (a theory that is mutually interpretable with) PAj.
The first three infinite levels thus encompass arithmetic, analysis and func-
tional analysis and therewith most of standard mathematics. In this fashion,
the hierarchy of sets and associated set-theoretic systems encompasses the
objects and systems of standard mathematics.

Now, should it turn out to be the case that the consistency sentences
(and the other, related sentences discovered by Gédel in 1931) were the only
instances of undecidable statements, then the sequence of systems in the
above hierarchy would catch every problem that arises. And although we
would never have a single system that gave us a complete axiomatization
of mathematical truth, we would have a series of systems that collectively
covered the totality of mathematical truths.

Unfortunately, matters were not to be so simple. The trouble is that
when one climbs the hierarchy of sets in this fashion the greater expressive
resources that become available lead to more intractable instances of unde-
cidable sentences and this is true already of the second and third infinite
levels. For example, at the second infinite level one can formulate the state-
ment PM (that all projective sets are Lebesgue measurable) and at the third
infinite level one can formulate CH (Cantor’s continuum hypothesis).” These
statements were intensively investigated during the early era of set theory
but little progress was made. The explanation was ultimately provided by
the subsequent independence techniques of Godel and Cohen.

Godel invented (in 1938) the method of inner models by defining the
minimal inner model L. This model is defined just as V is defined except
that at successor stages instead of taking the full powerset of the previous
stage one takes the definable powerset of the previous stage, where for a given
set X the definable powerset Def(X) of X is the set of all subsets of X that
are definable over X with parameters from X:

L(] =y
Lot1 = Def(Ly,)
L>\ = Ua<>\ LO‘
The inner model L is the union of all such stages: L = |J,co, La- G6del

showed that L satisfies (arbitrarily large fragments of) ZFC along with CH.
It follows that ZFC cannot refute CH. Cohen complemented this result by
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invented (in 1963) the method of forcing (or outer models). Given a complete
Boolean algebra he defined a model V® and showed that ~CH holds in V2.
This had the consequence that ZFC could not prove CH. Thus, these results
together showed that CH is independent of ZFC. Similar results hold for PM
and a host of other questions in set theory.

These instances of independence are more intractable in that no simple
iteration of the hierarchy of types leads to their resolution. They led to a
more profound search for new axioms.

Once again Godel provided the first steps in the search for new axioms.
In 1946 he proposed as new axioms large cardinal azioms—axioms of infinity
that assert that there are very large levels of the hierarchy of types—as
new axioms and he went so far as to entertain a generalized completeness
theorem for such axioms, according to which all statements of set theory
could be settled by such axioms. See Godel (1946), p. 151.

The purpose of the remainder of this entry is to describe the nature of
independence (along with the hierarchy of interpretability) and the connec-
tion between independence and large cardinal axioms. The more involved
issues of the search for new axioms and the nature of justification in mathe-
matics are treated in the entries “Determinacy and Large Cardinals” (which
focuses on PM) and “The Continuum Hypothesis” (which focuses on CH and
discusses the current state of the art).

Further Reading: For more on the incompleteness theorems see Smorynski
(1977), Buss (1998a), and Lindstrom (2003). For more on the independence
techniques in set theory see Jech (2003) and Kunen (1980).

2 The Interpretability Hierarchy

Our aim is to investigate the space of mathematical theories (construed as
recursively enumerable axiom systems). The ordering on the space of such
theories that we will consider is that of interpretability. The informal no-
tion of interpretability is ubiquitous in mathematics; for example, Poincaré
provided an interpretation of two dimensional hyperbolic geometry in the
Euclidean geometry of the unit circle; Dedekind provided an interpretation
of analysis in set theory; and Godel provided an interpretation of the theory
of formal syntax in arithmetic.

We shall use a precise formal regimentation of this informal notion. Let



Ty and T, be recursively enumerable axiom systems. We say that 17 is
interpretable in Ty (T; < Ty) when, roughly speaking, there is a translation 7
from the language of 77 to the language of T such that, for each sentence ¢
of the language of T, if T} F ¢ then Ty - 7(¢).” We shall write Ty < Ty when
Ty < Ty and Tp £ Ty and we shall write 77 = T, when both 77 < 75 and
Ty, < T). In the latter case, T} and Ty are said to be mutually interpretable.
The equivalence class of all theories mutually interpretable with T is called
the interpretability degree of T

For ease of exposition we shall make three simplifying assumptions con-
cerning the theories under consideration. First, we shall assume that all of
our theories are couched in the language of set theory. There is no loss of gen-
erality in this assumption since every theory is mutually interpretable with a
theory in this language. For example, as noted earlier, PA and ZFC — Infinity
are mutually interpretable. Second, we shall assume that all of our theories
contain ZFC — Infinity. Third, we shall assume that all of our theories are
¥%-sound.

The interpretability hierarchy is the collection of all theories (satisfying
our three simplifying assumptions) ordered under the relation <. We now
turn to a discussion of the structure of this hierarchy:.

To begin with, there is a useful characterization of the relation <. Let
us write T3 anl) T, to indicate that every IT%-statement provable in T) is
also provable in T5. A central result in the theory of interpretability is that
(granting our simplifying assumptions) 77 < Ty iff T} Cro 1o It follows
from this characterization and the second incompleteness theorem that for
any theory T the theory T+ Con(T') is strictly stronger than 7', that is,
T < T+ Con(T). Moreover, it follows from the arithmetized completeness
theorem that the theory T+ —Con(7) is interpretable in 7', hence, T =
T + =Con(T).

In terms of interpretability there are three possible ways in which a state-
ment ¢ can be independent of a theory 7.

(1) (SINGLE JuMP) Only one of ¢ or = leads to a jump in strength, that

is,
T+e>T and T +-p=T

(or likewise with ¢ and = interchanged).
(2) (No Jump) Neither ¢ nor = lead to a jump in strength, that is,
T+p=T and T+ -p=T.



(3) (DoUuBLE JumP) Both ¢ and = lead to a jump in strength, that is,
T+e>T and T+ —p >T.

It turns out that each of these possibilities is realized. For the first it suffices
to take the II{-sentence Con(T). For the second it is easy to see that there
is no example that is II{; the simplest possible complexity of such a sentence
is AY and it turns out that there are such examples; examples of this type of
independence are called Orey sentences. For the third kind of independence
there are I1{ instances. (This is a corollary of Lemma 14 on pages 128-129
of Lindstrém (2003).)

These are all metamathematical examples, the kind of example that only
a logician would construct. It is natural to ask whether there are “natural”
examples, roughly the sort of example occurring in the normal course of
mathematics. In the set theoretic case, such examples are abundant for
the first two cases. For example, PM is an example of the first kind of
independence and CH is an example of the second kind of independence.
There are no known “natural” examples of the third kind of independence. In
the arithmetical case, such examples are rare. There are examples of the first
kind of independence (the most famous of which is a classic example due to
Paris and Harrington) but none of the second or third kind of independence.

Notice that in the case of the third example the two theories above T
are incomparable in the interpretability order. To construct a pair of such
[1{-statements one uses a reciprocal form of the diagonal lemma to construct
two I1%-statements that refer to one another. Using such techniques can show
that the interpretability order is quite complex. For example, for any two
theories 77 and T3 such that T} < T, there is a third theory T such that
Ty < T < T5. Thus, the order on the degrees of interpretability is neither
linearly ordered nor well-founded. (See Feferman (1960).)

Remarkably, it turns out that when one restricts to those theories that
“arise in nature” the interpretability ordering is quite simple: There are
no descending chains and there are no incomparable elements—the inter-
pretability ordering on theories that “arise in nature” is a wellordering. In
particular, although there are natural examples of the first and second kind
of independence (e.g. PM and CH, respectively, something to which we will
return to below), there are no known natural examples of the third kind of
independence.

So, for theories that “arise in nature”, we have a wellordered hierarchy
under the interpretability ordering. At the base of the ordering one has the
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degree that is represented by our minimal theory ZFC — Infinity and there
is only one way to proceed, namely, upward in terms of strength.

We have already seen one way of climbing the hierarchy of the degrees
of interpretability, namely, by adding consistency statements. There are two
drawbacks to this approach. First, if one starts with a theory that “arises in
nature” and adds the consistency statement one lands in a degree that has no
known representative that “arises in nature”. Second, the consistency state-
ment does not take one very far up the hierarchy. Both of these drawbacks
are remedied by a very natural class of axioms—the large cardinal axioms.

Further Reading: For more on the structure of the interpretability hierarchy
see chapters 6-8 of Lindstrom (2003).

3 Large Cardinal Axioms

Let Zo be the theory ZFC — Infinity — Replacement. (This theory is logi-
cally equivalent to our base theory ZFC — Infinity.) We shall successively
strengthen Z; by reflectively adding axioms that assert certain levels of the
universe of sets exist.

The standard model of Zg is V,,. The Axiom of Infinity (in one formu-
lation) simply asserts that this set exists. So, when we add the Axiom of
Infinity, the resulting theory Z; (known as Zermelo set theory with Choice)
not only proves the consistency of Z;; it proves that there is a standard model
of Z;. Now the standard model of Z; is V,,.,. The Axiom of Replacement
implies that this set exists. So, when we add the Axiom of Replacement, the
resulting theory Zy (known as ZFC), not only proves the consistency of Zi;
it proves that there is a standard model of Z;.

A standard model of Zs has the form V, where k is a regular cardinal
such that for all & < kK, 2* < k. Such a cardinal is called a (strongly)
inaccessible cardinal. The next axiom in the hierarchy under consideration
is the statement asserting that such a cardinal exists. The resulting theory
ZFC + “There is a strongly inaccessible cardinal” proves that there is a level
of the universe that satisfies ZFC. Continuing in this fashion one arrives at
stronger and stronger axioms that assert the existence of larger and larger
levels of the universe of sets. Before continuing with an outline of such axioms
let us first draw the connection with the hierarchy of interpretability.

Recall our classification of the three types of independence. We noted that



there are no known natural examples of the third kind of independence but
that there are natural examples of the first and second kind of independence.

Natural examples of the second kind of independence are provided by the
dual method of inner and outer models. For example, these methods show
that the theories ZFC+ CH and ZFC+ —CH are mutually interpretable with
ZFC, that is, all three theories lie in the same degree. In other words, CH is
an Orey sentence with respect to ZFC. What about that other sentence we
introduced: PM?

Using the method of inner models Godel showed that =PM holds in L. It
follows that ZFC+—PM is mutually interpretable with ZFC. But what about
PM? To show that ZFC 4 PM is mutually interpretable with ZFC a natural
approach would be to follow the approach used for CH and build an outer
model of ZFC that satisfies PM. However, it is known that this cannot be
done starting with ZFC alone. For it turns out (by a result of Shelah (1984))
that ZFC + PM implies the consistency of ZFC and this implies, by the
second incompleteness theorem, that ZFC + PM is not interpretable in ZFC.
In a sense we have here a case of the independence of independence. More
precisely, even if we assume that ZFC is consistent we cannot (in contrast
to the case of CH) prove that PM is independent of ZFC. To establish
the independence of PM from ZFC we need to assume the consistency of
a stronger theory, namely, that of ZFC 4 “There is a strongly inaccessible
cardinal”. For it turns out that ZFC + PM lies not in the interpretability
degree of ZFC but rather in that of ZFC + “There is a strongly inaccessible
cardinal”. To summarize: While CH is a case of the first type independence,
PM is a case of the second type independence; it is similar to Con(ZFC) in
that it is a sentence ¢ such that only one of ¢ or —p leads to a jump in
strength, only now there are two differences; the jump lands in a degree that
is much stronger and it is represented by a natural theory.

In general, the (known) sentences of set theory are either like CH or PM.
Some are like CH in that both ZFC 4 ¢ and ZFC + —y lie in the degree of
ZFC. Others are like PM in that one of ZFC + ¢ and ZFC + —¢ lies in the
degree of ZFC while the other lies in the degree of an extension of ZFC via
a large cardinal axiom.

Let us now return to our overview of large cardinal axioms. After strongly
inaccessible cardinals there are Mahlo cardinals, indescribable cardinals, and
ineffable cardinals. All of these large cardinal axioms can be derived in a
uniform way using the traditional variety of reflection principles (see Tait
(2005a)) but there are limitations on how far this variety of reflection princi-
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ples can take one. For under a very general characterization of such princi-
ples it is known that they cannot yield the Erdos cardinal x(w). See Koellner
(2009).

The large cardinals considered thus far (including k(w)) are known as
small large cardinals. A large cardinal is small if the associated large cardinal
axiom can hold in Godel’s constructible universe L, that is, if “V = k is a -
cardinal” is consistent, then “L = k is a p-cardinal” is consistent. Otherwise
the large cardinal is large.

There is a simple template for formulating (large) large cardinal axioms
is in terms of elementary embeddings. In general such an axiom asserts that
there is a transitive class M and a non-trivial elementary embedding

gV =M.

To say that the embedding is non-trivial is just to say that it is not the
identity, in which case there must be a least ordinal that is moved. This
ordinal is called the critical point of j and denoted crit(j). The critical point
is (typically) the large cardinal associated with the embedding. A cardinal
is said to be measurable iff it is the critical point of some such embedding.®
It is easy to see that for any such embedding V.1 C M where k = crit(j).
This amount of agreement enables one to show that x is strongly inaccessible,
Mabhlo, indescribable, ineffable, etc. To illustrate this let us assume that we
have shown that s is strongly inaccessible and let us show that x has much
stronger large cardinal properties. Since & is strongly inaccessible in V' and
since (Viy1)M = Viiy, M also thinks that k is strongly inaccessible. In
particular, M thinks that there is a strongly inaccessible cardinal (namely,
k) below j(k). But then by the elementarity of j, V must think the same
think of the preimage of j(k), namely, &, that is, V must think that there is a
strongly inaccessible below . So k cannot be the least strongly inaccessible
cardinal. Continuing in this manner one can show that there are many
strongly inaccessibles below x and, in fact, that x is Mahlo, indescribable,
ineffable, etc. So measurable cardinals subsume the small large cardinals.
In fact, Scott showed that (in contrast to the small large cardinals) mea-
surable cardinals cannot exist in Godel’s constructible universe. Let us be
precise about this. Let V=L be the statement that asserts that all sets are
constructible. Then for each small large cardinal axiom ¢ (to be precise,
those listed above) if the theory ZFC + ¢ is consistent then so is the theory
ZFC + ¢ + V=1L. In contrast, the theory ZFC + “There is a measurable
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cardinal” proves =V = L. This may seem somewhat counterintuitive since L
contains all of the ordinals and so if x is a measurable cardinal then x is an
ordinal in L. The point is that L cannot “recognize” that x is a measurable
cardinal since it is too “thin” to contain the ultrafilter that witnesses the
measurability of x.

One way to strengthen a large cardinal axiom based on the above template
is to demand greater agreement between M and V. For example, if one
demands that Vo C M then the fact that x is measurable (something
witnessed by a subset of P(k)) can be recognized by M. And so, by exactly
the same argument that we used above, there must be a measurable cardinal
below k.

This leads to a progression of increasingly strong large cardinal axioms. It
will be useful to discuss some of the major stepping stones in this hierarchy.

If k is a cardinal and > k is an ordinal then & is n-strong if there is
a transitive class M and a non-trivial elementary embedding 7 : V. — M
such that crit(j) = &, j(k) > nand V;, C M. A cardinal  is strong iff it is
n-strong for all > k. One can also demand that the embedding preserve
certain classes: If A is a class, k is a cardinal, and n > « is an ordinal then
k is n-A-strong if there exists a j : V — M which witnesses that x is 7-
strong and which has the additional feature that j(ANV,) NV, = ANV,.
The following large cardinal notion plays a central role in the search for new
axioms.

Definition 3.1. A cardinal « is a Woodin cardinal if x is strongly inaccessible
and for all A C V, there is a cardinal x4 < x such that

K4 is n-A-strong,
for each 1 such that k4 <n < K.

One can obtain stronger large cardinal axioms by forging a link between
the embedding 7 and the amount of resemblance between M and V. For
example, a cardinal k is superstrong if there is a transitive class M and a
non-trivial elementary embedding j : V' — M such that crit(j) = ~ and
Vi © M. If K is superstrong then x is a Woodin cardinal and there are
arbitrarily large Woodin cardinals below x.

One can also obtain strong large cardinal axioms by placing closure con-
ditions on the target model M. For example, letting v > x a cardinal x is
~v-supercompact if there is a transitive class M and a non-trivial elementary
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embedding j : V' — M such that crit(j) = x and "M C M, that is, M is
closed under y-sequences. (It is straightforward to see that if M is closed
under y-sequences then V., C M; so this approach subsumes the previous
approach.) A cardinal k is supercompact if it is y-supercompact for all v > &.
Now, just as in the previous approach, one can strengthen these axioms by
forging a link between the embedding j and the closure conditions on the
target model. A cardinal k is n-huge if there is a transitive class M and a
non-trivial elementary embedding j : V' — M such that "M C M, where
Kk = crit(j) and j77 (k) is defined to be j(j(k)).

One can continue in this vein, demanding greater agreement between M
and V. The ultimate axiom in this direction would, of course, demand that
M = V. This axiom was proposed by Reinhardt and shortly thereafter
shown to be inconsistent (in ZFC) by Kunen. In fact, Kunen showed that,
assuming ZFC, there can be a transitive class M and a non-trivial elementary
embedding j : V' — M such that j“\ € M, where A = sup,,_, j"(x) and
k = crit(j). In particular, there cannot exists such an M and j such that
Vi1 € M. This placed a limit on the amount of closure of the target model
(in relation to the embedding).”

Nevertheless, there is a lot of room below the above upper bound. For
example, a very strong axiom is the statement that there is a non-trivial
elementary embedding j : V11 — Vii1. The strongest large cardinal axiom
in the current literature is the axiom asserting that there is a non-trivial
elementary embedding j : L(Vy;1) — L(Vi;1) such that crit(j) < A. In
recent work, Woodin has discovered axioms much stronger than this.

Further Reading: For more on large cardinal axioms see Kanamori (2003).

4 Large Cardinal Axioms and the Inter-
pretability Hierarchy

The large cardinal axioms discussed above are naturally well-ordered in terms
of strength.!! This provides a natural way of climbing the hierarchy of inter-
pretability. At the base we start with the theory ZFC — Infinity and then we
climb to ZFC and up through ZFC + & for various large cardinal axioms .
Notice that for two large cardinal axioms ® and W, if ¥ is stronger than ®
then W implies that there is a standard model of ® and so we have a natural
interpretation of ZFC + & in ZFC + V.
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We have already noted that ZFC + —PM is mutually interpretable with
ZFC+ LC where LC is the large cardinal axiom “There is a strongly inacces-
sible cardinal” and that this is shown using the dual techniques of inner and
outer model theory. It is a remarkable empirical fact that for any “natural”
statement in the language of set theory ¢ one can generally find a large car-
dinal axiom ® such that ZFC + ¢ and ZFC + & are mutually interpretable.
Again, this is established using the dual techniques of inner and outer model
theory only now large cardinals enter the mix. To establish that ZFC + ®
interprets ZFC 4 ¢ one generally starts with a model of ZFC + ® and uses
forcing to construct a model of ZFC+ . In many cases the forcing construc-
tion involves “collapsing” the large cardinal associated with ® and arranging
the collapse in such a way that ¢ holds in the “rubble”. In the other direc-
tion, one generally starts with a model of ZFC + ¢ and then constructs an
inner model (a model resembling L but able to accommodate large cardinal
axioms) that contains the large cardinal asserted to exist by ®. The branch
of set theory known as inner model theory is devoted to the construction of
such “L-like” models for stronger and stronger large cardinal axioms.

In this way the theories of the form ZFC + LC, where LC is a large
cardinal axiom, provide a yardstick for measuring the strength of theories.
They also act as intermediaries for comparing theories from conceptually
distinct domains: Given ZFC + ¢ and ZFC + ¢ one finds large cardinal
axioms ® and ¥ such that (using the methods of inner and outer models)
ZFC+ ¢ and ZFC + ® are mutually interpretable and ZFC 41 and ZFC + W
are mutually interpretable. One then compares ZFC + ¢ and ZFC + ¢ (in
terms of interpretability) by mediating through the natural interpretability
relationship between ZFC + ® and ZFC + W. So large cardinal axioms (in
conjunction with the dual method of inner and outer models) lie at the
heart of the remarkable empirical fact that natural theories from completely
distinct domains can be compared in terms of interpretability.

Further Reading: For an introduction to inner model theory see Section 4 of
the entry “Large Cardinals and Determinacy” and for further details see the
references therein.
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5 Some Philosophical Considerations

The main question that arises in light of the independence results is whether
one can justify new axioms that settle the statements left undecided by the
standard axioms. There are two views. On the first view, the answer is taken
to be negative and one embraces a radical form of pluralism in which one has
a plethora of equally legitimate extensions of the standard axioms. On the
second view, the answer it taken (at least in part) to be affirmative, and the
results simply indicate that ZFC is too weak to capture the mathematical
truths. This topic is quite involved and lies outside the scope of the present
article. For more on the subject see the entries on “Large Cardinals and
Determinacy” and “The Continuum Hypothesis”.

But there are other philosophical questions more directly related to the
themes of this article. First, what is the significance of the empirical fact that
the large cardinal axioms appear to be wellordered under interpretability?
Second, what is the significance of the empirical fact that large cardinal
axioms play a central role in comparing many theories from conceptually
distinct domains. Let us consider these two questions in turn.

One might try to argue that the fact that the large cardinal axioms are
wellordered under interpretability is a consideration in their favour. How-
ever, this would be a weak argument. For, as we have noted above, all
“natural” theories appear to be wellordered under interpretability and this
includes theories that are incompatible with one another. For example, it is
straightforward to select “natural” theories from higher and higher degrees of
theories in the wellordered sequence that are incompatible with one another.
It follows that the feature of being wellordered under interpretability, while
remarkable, can not be a point in favour of truth.

But large cardinal axioms have additional features that singles them out
from the class of natural theories in the wellordered sequence of degrees.
To begin with they provide the most natural way to climb the hierarchy
of interpretability—they are the simplest and most natural manifestation of
pure mathematical strength. But more important is the second component
mentioned above, namely, the large cardinal axioms act as intermediaries
in comparing theories from conceptually distinct domains. For recall how
this works: Given ZFC + ¢ and ZFC + v one finds large cardinal axioms
¢ and W such that (using the methods of inner and outer models) ZFC +
¢ and ZFC 4+ ® are mutually interpretable and ZFC + ¢ and ZFC + ¥
are mutually interpretable. One then compares ZFC + ¢ and ZFC + ¢ (in
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terms of interpretability) by mediating through the natural interpretability
relationship between ZFC + & and ZFC + V.

It turns out that in many cases this is the only known way to compare
ZFC+ ¢ and ZFC+1), that is, in many cases there is no direct interpretation
in either direction, instead one must pass through the large cardinal azioms.
Can this additional feature be used to make a case for large cardinal axioms?
The answer is unclear. However, what is clear is the absolute centrality of
large cardinal axioms in set theory.

Notes

Tt will be useful at this point to introduce some basic syntactic notions. The language of
first-order arithmetic is the language consisting of the usual logical symbols (propositional
connectives, quantifiers, and equality (=)) and the following non-logical symbols: The
constant symbol 0, the unary successor function .S, the binary operators + and -, and
the binary relation <. The terms are generated by starting with 0 and the variables and
iteratively applying S, + and -. A quantifier is bounded if it is of the form Jz < t or Vo < ¢
where ¢ is a term not involving x. A formula is a bounded formula (denoted AY) if all of
its quantifiers are bounded. For n > 0 the classes of formulas X0 and I19 are defined as
follows: Xf =IIJ = AJ. X0, is the set of formulas of the form 3%y where ¢ is II9 and &
is a (possibly empty) list of variables. IIY is the set of formulas of the form 3%y where
¢ is X9 and 7 is a (possibly empty) list of variables. The classes X0, II? constitute the
arithmetical hierarchy of formulas.

For a formal system T of arithmetic, a formula ¢ is (I19)7 if it is provably equivalent in
T to a 119 formula. Likewise, for (X2)7. A formula ¢ is (A%)7 if it is provably equivalent
in T to both a ¥ formula and a IIY formula. In many cases, when the context is clear,
we shall drop reference to T'.

A formal system T of arithmetic is X.9-complete if it proves every true Y{-statement.
The system PA is ¥9-complete. The raises the question of whether PA can capture the
truths at the next level of the arithmetical hierarchy, that is, the II{ truths. The statement
Con(PA) is a I1{-statement (informally it asserts “for all natural numbers n, n does not
code a proof of a contradiction from the axioms of PA”). Thus, granting the consistency
of PA, the incompleteness theorem shows that there is a I19-truth that cannot be proved
in PA.

2A system T is 29 sound iff for every X{-statement ¢, if T' proves ¢ then ¢ is true.

3In general, for a cardinal x, a set z is of hereditarily cardinality of size less than s, if
x has size less than k, all of the members of x have size less than «, etc., in other words,
the transitive closure of = has size less than k. The set of all sets of hereditary cardinality
less than & is denoted H (k). In particular, H(w) = V,.

4For a more detailed treatment of this notion see the next section. The interpretation of
PA in ZFC—Infinity was established during the early days of set theory. The interpretation
of ZFC — Infinity in PA was established by Ackermann in his (1937).
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5In descriptive set theory it is convenient to work with the “logician’s reals”, that is,
Baire space, w®. This is the set of all infinite sequences of natural numbers (with the
product topology (taking w to be discrete)).

The projective sets of reals (or sets of k-tuples of reals) are obtained by starting with
the closed subsets of (w*)* and iterating the operations of complement and projection.
For A C (w¥)*, the complement of A is simply (w*)¥ — A. For A C (w*®)**+1, the projection
of Ais

plA] = {{z1,...,21) € (W)* | By (x1,..., 28, y) € A}

(Think of the case where k+1 = 3. Here A is a subset of three-dimensional space and p[A]
is the result of “projecting” A along the third axis onto the plane spanned by the first two
axes.) We can now define the hierarchy of projective sets as follows: At the base level let
¥ consist of the open subsets of (w*)* and let II} consist of the closed subsets of (w*)*.
For each n such that 0 < n < w, recursively define 1;[71Z to consist of the complements of
sets in ENI,IL and END;H to consist of the projections of sets in IIL. The projective sets of
(k-tuples of) reals are the sets appearing in this hierarchy. This hierarchy is also a proper
hierarchy, as can be seen using universal sets and diagonalization.
It is a classical result of analysis (due to Luzin and Suslin in 1917) that the ¥ sets

are Lebesgue measurable.

6There are a number of different ways of formalizing forcing. One can forgo talk of
models and treat the independence results proof-theoretically. One can also give a model-
theoretic treatment and here there are two approaches. The first approach starts with a
countable transitive model M of a sufficiently large fragment of ZFC and then (working in
V') one actually builds an outer model M[G] that satisfies a large fragment of set theory
and the statement one wishes to show is independent. The second approach involves
working with class-size Boolean-valued models. Cohen took the first approach but we
have found it simpler to take the second in our treatment. (We caution the reader that
set theorists often speak of V[G] as if there were a model larger than the universe of sets.
When they do so they are either thinking of V' as a countable model (like M above) or
thinking of V[G] as a Boolean valued model (like V). See Kunen (1980), pp. 232-235 for
further discussion.

"For a precise definition see chapter 6 of Lindstrom (2003).

8The above formulation of large cardinal axioms invokes classes but there are equivalent
formulations in terms of sets. For example, in the case of a measurable cardinal k there is
a subset of P(k) (namely, a k-complete ultrafilter over k) witnessing that « is measurable.

9Tt should be noted that in contrast to measurable and strong cardinals, Woodin cardi-
nals are not characterized as the critical point of an embedding or collection of embeddings.
In fact, a Woodin cardinal need not be measurable. However, if k is a Woodin cardinal,
then V, is a model of ZFC and V,; satisfies that there is a proper class of strong cardinals.

101t is still open whether large cardinal axioms at the level of Reinhardt and beyond
are inconsistent in ZF alone (that is, without invoking AC). Should they turn out to
be consistent then one would have a hierarchy of “choiceless” large cardinal axioms that
would climb the hierarchy of interpretability beyond the large cardinal axioms formulated
in the context of ZFC.

1We should note that there are many large cardinal axioms that we have not discussed.
The large cardinal axioms that have been investigated to date are for the most part known
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to be naturally well-ordered. However, there are some comparisons that remain open;
for example, although it is known that a strongly compact cardinal is weaker than a
supercompact cardinal it is not know how it compares with Woodin cardinals.
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