I-Indexed Indiscernible Sets and Trees

Lynn Scow

Vassar College

Harvard/MIT Logic Seminar
December 3, 2013
Outline

1. background
2. the modeling property
3. a dictionary theorem
The modeling property

order indiscernible sets

- Fix a linear order O and an L-structure M (we assume M is sufficiently saturated.)
- Let b_i be same-length finite tuples from M:

Definition

$B = \{b_i \mid i \in O\}$ is an **order-indiscernible set** if for all $n \geq 1$, for all $i_1, \ldots, i_n, j_1, \ldots, j_n$ from O,

$(i_1, \ldots, i_n) \mapsto (j_1, \ldots, j_n)$ is an order-isomorphism \Rightarrow

$tp^L(b_{i_1}, \ldots, b_{i_n}; M) = tp^L(b_{j_1}, \ldots, b_{j_n}; M)$
Suppose we have parameters \(A = \{ a_i \mid i < \omega \} \) and
\[
i < j \Rightarrow \models \varphi(a_i, a_j)
\]
(let’s assume \(\varphi(x, x) \) is unsatisfiable)

In a typical application, we use Ramsey’s theorem to find an order-indiscernible set \(B = \{ b_i \mid i < \omega \} \) such that
\[
i < j \Rightarrow \models \varphi(b_i, b_j)
\]

Because \(B \) is indiscernible, for some \(t \in \{0, 1\} \) (\(\varphi^0 = \varphi, \varphi^1 = \neg \varphi \))
\[
i > j \Rightarrow \models \varphi(b_i, b_j)^t
\]

In a well-known characterization: \(\text{Th}(M) \) is stable \(\iff t = 0 \) for all such \(B \)
Consider O as a structure in its own right, $\mathcal{O} = (O, <)$ in the language $L' = \{<\}$, and re-write the definition:

Definition

$B = \{b_i : i \in O\}$ is an order-indiscernible set if for all $n \geq 1$, for all $i_1, \ldots, i_n, j_1, \ldots, j_n$ from O,

$$(i_1, \ldots, i_n) \sim (j_1, \ldots, j_n) \Rightarrow \text{tp}^L(b_{i_1}, \ldots, b_{i_n}; M) = \text{tp}^L(b_{j_1}, \ldots, b_{j_n}; M)$$

Here $(i_1, \ldots, i_n) \sim (j_1, \ldots, j_n)$ means

$$\text{qftp}^{L'}(i_1, \ldots, i_n; O) = \text{qftp}^{L'}(j_1, \ldots, j_n; O)$$
I-indexed indiscernible sets

- Now we fix an arbitrary language L', and an L'-structure \mathcal{I} in the place of \mathcal{O}.

Definition ([She90])

$B = \{b_i : i \in I\}$ is an \mathcal{I}-indexed indiscernible set if for all $n \geq 1$, for all $i_1, \ldots, i_n, j_1, \ldots, j_n$ from I,

$$(i_1, \ldots, i_n) \sim (j_1, \ldots, j_n) \Rightarrow \text{tp}^L(b_{i_1}, \ldots, b_{i_n}; M) = \text{tp}^L(b_{j_1}, \ldots, b_{j_n}; M)$$

Here $(i_1, \ldots, i_n) \sim (j_1, \ldots, j_n)$ means

$$\text{qftp}^{L'}(i_1, \ldots, i_n; \mathcal{I}) = \text{qftp}^{L'}(j_1, \ldots, j_n; \mathcal{I})$$

- Say that B is Δ-\mathcal{I}-indexed indiscernible for $\Delta \subseteq L$ if we replace L above by Δ.
Suppose $\varphi(x,x)$ is unsatisfiable. Then the “type” of a $\{\varphi\}$-\mathcal{I}-indexed indiscernible set B is determined entirely by the data $t = (t_0, t_1, \ldots)$

- If B is an order-indiscernible set:
 \begin{align*}
 i < j & \implies \models \varphi(b_i, b_j)^{t_0} \\
 i > j & \implies \models \varphi(b_i, b_j)^{t_1}
 \end{align*}

- If B is an ordered-graph indexed indiscernible set
 \begin{align*}
 i < j \land i \not< j & \implies \models \varphi(b_i, b_j)^{t_0} \\
 i > j \land i \not< j & \implies \models \varphi(b_i, b_j)^{t_1} \\
 i < j \land \neg i \not< j & \implies \models \varphi(b_i, b_j)^{t_2} \\
 i > j \land \neg i \not< j & \implies \models \varphi(b_i, b_j)^{t_3}
 \end{align*}
ordered graphs

- Consider the example $\mathcal{I} = (I, <, E)$ for an order relation $<$ and an edge relation E. Suppose we only consider \mathcal{I} that are weakly saturated, i.e., that embed all possible ordered graphs.
- The above kind of \mathcal{I}-indexed indiscernible can be applied to characterize NIP theories.
- We call it an ordered graph-indiscernible set.
- Suppose we have an ordered graph-indexed set B such that

 \[i < j \land iRj \Rightarrow \varphi(b_i, b_j) \]

 \[i < j \land \neg iRj \Rightarrow \varphi(b_i, b_j)^t \]

 T is NIP $\iff t = 0$ for all such B
- In a characterization from [Sco12]: T is NIP iff any ordered graph indiscernible set in a model of T is an order-indiscernible set.
Fix a coloring on n-tuples from I, where coloring is uniform on pairs:

$$\Rightarrow \exists \text{ large homogeneous } B \subseteq I \text{ s.t. } \forall (i, j) \text{ from } B:$$

<table>
<thead>
<tr>
<th></th>
<th>iRj</th>
<th>$\neg iRj$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i < j$</td>
<td>red</td>
<td>blue</td>
</tr>
<tr>
<td>$i > j$</td>
<td>green</td>
<td>purple</td>
</tr>
</tbody>
</table>

(Ramsey’s theorem)

$$\Rightarrow$$

<table>
<thead>
<tr>
<th></th>
<th>iRj</th>
<th>$\neg iRj$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i < j$</td>
<td>r (b)</td>
<td>r (b)</td>
</tr>
<tr>
<td>$i > j$</td>
<td>p (g)</td>
<td>p (g)</td>
</tr>
</tbody>
</table>

(Nešetřil-Rödl theorem)

$$\Rightarrow$$

<table>
<thead>
<tr>
<th></th>
<th>iRj</th>
<th>$\neg iRj$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i < j$</td>
<td>red</td>
<td>blue</td>
</tr>
<tr>
<td>$i > j$</td>
<td>green</td>
<td>purple</td>
</tr>
</tbody>
</table>
\[\mathcal{I}_s = (\omega^{<\omega}, \sqsubseteq, \land, <_{\text{lex}}, (P_n)_{n<\omega}) \]

where \(\sqsubseteq \) is the partial tree-order, \(\land \) is the meet function in this order, \(<_{\text{lex}} \) is the lexicographical order, and the \(P_n \) are predicates picking out the \(n \)-th level of the tree

\[\mathcal{I}_1 = (\omega^{<\omega}, \sqsubseteq, \land, <_{\text{lex}}, <_{\text{lev}}) \]

where \(\eta <_{\text{lev}} \nu \Leftrightarrow \ell(\eta) < \ell(\nu) \)

\[\mathcal{I}_0 = (\omega^{<\omega}, \sqsubseteq, \land, <_{\text{lex}}) \]

\[\mathcal{I}_t = (\omega^{<\omega}, \sqsubseteq, <_{\text{lex}}) \]
The structure \mathcal{I}_s is ideal to study TP

Definition

A theory T has the (2-)tree property (TP) if there is a model $M \models T$, a formula $\varphi(x; y)$ and parameters a_η from M with $\ell(a_\eta) = \ell(y)$ such that:

1. $\{\varphi(x; a_\sigma|_n) : \sigma \in \omega^\omega\}$ is consistent
 (nodes on a path “are consistent”),
 and
2. for all $\eta \in \omega^{<\omega}$, pairs from $\{\varphi(x; a_\eta \dashv \langle i \rangle) : i < \omega\}$ are inconsistent
 (siblings “are inconsistent”)

By a well-known result, if a theory has TP, then it has TP as witnessed by $B = \{b_\eta \mid \eta \in \omega^{>\omega}\}$ where B is \mathcal{I}_s-indexed indiscernible.

By a series of reductions, one proves the well-known theorem that TP comes in one of two extremal versions...TP1 and TP2.
Fix a class \mathcal{K} of finite L'-structures.

Definition

For $A, B \in \mathcal{K}$, a *copy of A in B* is an embedding $f : A \to B$ modulo the equivalence relation of being the same embedding up to an automorphism of A.

1. From now on, assume L' contains a relation $<$ linearly ordering all members of \mathcal{K}.
2. Then we may think of a copy of A in B as being the range of an embedding from A into B.
3. We denote the copies of A in B as $\left(B_A \right)$.
Given a finite set X of cardinality k, we refer to a map $c : \binom{C}{A} \to X$ as a k-coloring of the copies of A in C.

We say that $B' \subseteq C$ is homogeneous for c if there is an element $x_0 \in X$ such that for all $A' \in \binom{B'}{A}$, $c(A') = x_0$.

Definition

A class \mathcal{K} of finite L'-structures is a **Ramsey class** if for all $A, B \in \mathcal{K}$ there is a $C \in \mathcal{K}$ such that for any 2-coloring of $\binom{C}{A}$, there is a $B' \subseteq C$, isomorphic to B that is homogeneous for this coloring.
EM-types

- For $A = \{a_i \mid i \in I\}$ we can formally define a type in variables $
\{x_i \mid i \in I\}$ called the **Ehrenfeucht-Mostowski type of A**, $EM(A)$

- If $\models \varphi(a_{i_1}, \ldots, a_{i_n})$ for all $(i_1, \ldots, i_n) \sim (j_1, \ldots, j_n)$, then
 $$\varphi(x_{j_1}, \ldots, x_{j_n}) \in EM(A)$$

- If $B \models EM(A)$, and q is a complete quantifier free type in the language of I, then if
 $$\forall \bar{i} \ (q(\bar{i}) \Rightarrow \models \varphi(\bar{a}_i))$$
 then
 $$\forall \bar{i} \ (q(\bar{i}) \Rightarrow \models \varphi(\bar{b}_i))$$

In fact B will have a rule such as the above for all quantifier-free types q; whereas A could have rules for none.
the modeling property

\[\mathcal{I}\text{-indexed indiscernibles have the } \textbf{modeling property} \text{ if for all } \mathcal{I}\text{-indexed parameters } A = (a_i : i \in I) \text{ in any structure } \mathcal{M}, \text{ there exists } \mathcal{I}\text{-indexed indiscernible parameters } B \models \text{EM}(A) \]

For which \(\mathcal{I} \) do \(\mathcal{I} \)-indexed indiscernibles have the modeling property?
Theorem (dictionary theorem)

Suppose that \mathcal{I} is a qfi, locally finite structure in a language L' with a relation $<$ linearly ordering I. Then \mathcal{I}-indexed indiscernible sets have the modeling property just in case $\text{age}(\mathcal{I})$ is a Ramsey class.

- Recall $\mathcal{I}_0 = (\omega^{<\omega}, \sqsubseteq, \land, <_{\text{lex}})$

Theorem (Takeuchi-Tsuboi)

I_0-indexed indiscernibles have the modeling property.

Corollary

$\text{age}(I_0)$ is a Ramsey class.

- Removing \land destroys the Ramsey property.
Proof.

By [Neš05], if \mathcal{K} is a Ramsey class, then \mathcal{K} has the amalgamation property. However, an example analyzed in Takeuchi-Tsuboi provides a counterexample to amalgamation. A L_t-embeds into B_1, B_2 by $a_i \mapsto b_i, c_i$.

Suppose there exists some amalgam C for (A, B_1, B_2). Observe that b_4, c_4 in C must be \leq-comparable in C, as both points are \leq-predecessors of the same point, $b_2 (= c_2)$. If $b_4 \leq c_4$, then $b_4 \leq c_4 \leq c_3 = b_3$, contradicting the data in B_1. If $c_4 \leq b_4$, then $c_4 \leq b_4 \leq b_1 = c_1$, contradicting the data in B_2.

\[\mathcal{K} = \text{age}(\mathcal{I}_t) \text{ not a Ramsey class} \]
Theorem ([She90])

For every $n, m < \omega$ there is some $k = k(n, m) < \omega$ such that for any infinite cardinal χ, the following is true of $\lambda := \bigcup_k (\chi)^+$: for every $f : (n \geq \lambda)^m \to \chi$ there is a level-preserving, orientation-preserving subtree $I \subseteq n \geq \lambda$ such that

(i) $\langle \rangle \in I$ and whenever $\eta \in I \cap n > \lambda$, $\|\{\alpha < \lambda : \eta \cap \langle \alpha \rangle \in I\}\| \geq \chi^+$.

(ii) If $\bar{\eta}, \bar{\nu} \in I$ are such that $\bar{\eta} \sim_{\mathcal{I}_s} \bar{\nu}$ then $f(\eta_0, \ldots, \eta_{m-1}) = f(\nu_0, \ldots, \nu_{m-1})$.

Theorem ([Fou99])

$\text{age}(\mathcal{I}_s)$ is a Ramsey class

Both yield that \mathcal{I}_s-indexed indiscernibles have the modeling property, the second by way of the dictionary theorem. The first result yields a height-n indiscernible subtree with m-types from the original tree.
Thanks for your attention!
W. L. Fouché.
Symmetries and Ramsey properties of trees.

J. Nešetřil.
Homogeneous structures and Ramsey classes.

L. Scow.
Characterization of NIP theories by ordered graph-indiscernibles.

S. Shelah.
Classification Theory and the number of non-isomorphic models
(revised edition).