Diagonal stationary reflection and generic ultrapowers

Sean Cox
Institut für Mathematische Logik und Grundlagenforschung
Universität Münster
wwwmath.uni-muenster.de/logik/Personen/Cox

MAMLS 2011, Harvard
February 19, 2011
Main Theme

Strong forcing axioms (MM, PFA) imply the existence of ideals with interesting generic ultrapowers; these generic ultrapowers have critical point ω_2.
Main Theme

Strong forcing axioms (MM, PFA) imply the existence of ideals with interesting generic ultrapowers; these generic ultrapowers have critical point ω_2.

Vaguely: For sufficiently large classes Γ of posets, $MA(\Gamma)$ implies there are ideals I whose positive-set forcings are “almost” in Γ.
Motivation: Condensation

The (duals of the) ideals will concentrate on $M \in \wp_{\omega_2}(H_\theta)$ which have condensation-like properties.
The (duals of the) ideals will concentrate on $M \in \wp_{\omega_2}(H_\theta)$ which have condensation-like properties.

Gödel’s Condensation Lemma for L: whenever $M \prec (H_\theta, \in)$, if $\sigma_M : H_M \rightarrow H_\theta$ is the inverse of Mostowski Collapse of M then for every $\alpha \in H_M \cap ORD$: $(L_\alpha)^{H_M} = L_\alpha$.

So the function $\alpha \mapsto L_\alpha$ condenses on M.
Motivation: Two condensation-like principles under strong forcing axioms

Strong forcing axioms imply condensation-like properties:

- (Viale-Weiss) Proper Forcing Axiom implies ISP
- (Foreman) Martin’s Maximum implies highly simultaneous ("diagonal") stationary set reflection
Motivation: A condensation principle under PFA

Theorem

(Viale/Weiss): Assume PFA and fix regular $\Omega \gg \theta \geq \omega_2$. There are stationarily many $M \in \wp_{\omega_2}(H_\Omega)$ such that whenever $N \mapsto F(N) \subset N$ is a slender function on $\wp_{\omega_2}(H_\theta)$ and $F \in M$, then M “catches” F.

$\sigma^{-1} Y \subset \bar{M}$ is an element of \bar{M}.
Motivation: A condensation principle under PFA

Theorem
(Viale/Weiss): Assume PFA and fix regular $\Omega \gg \theta \geq \omega_2$. There are stationarily many $M \in \wp_{\omega_2}(H_\Omega)$ such that whenever $N \mapsto F(N) \subset N$ is a slender function on $\wp_{\omega_2}(H_\theta)$ and $F \in M$, then M “catches” F.

- i.e. if $\sigma : \tilde{M} \to M$ is inverse of trans. collapse and $Y := F(M \cap H_\theta)$, then $\sigma^{-1}“Y \subset \tilde{M}$ is an element of \tilde{M}

- So M detects a lot of 2nd order information about itself.
Motivation: A condensation principle under MM

Theorem
(Foreman): Assume MM and suppose \(\theta \subset H \subseteq H_\theta \) where \(|H| = \theta \). Fix a partition \(\langle R_i \mid i \in H \rangle \) of \(\theta \cap \text{cof}(\omega) \) into stationary sets.

Then there are stationarily many (internally approachable) \(M \in 2^{\omega_2}(H) \) such that:

\[
R_i \text{ reflects to } \sup(M \cap \theta) \iff i \in M
\quad (1)
\]

\(\overset{\text{Again}}{\Rightarrow} \) \(M \) detects some 2nd order information.
Motivation: A condensation principle under MM

Theorem

(Foreman): Assume MM and suppose $\theta \subset H \subseteq H_\theta$ where $|H| = \theta$. Fix a partition $\langle R_i \mid i \in H \rangle$ of $\theta \cap \text{cof}(\omega)$ into stationary sets.

Then there are stationarily many (internally approachable) $M \in \wp(\omega_2)(H)$ such that:

$$R_i \text{ reflects to } \sup(M \cap \theta) \iff i \in M$$ \hspace{1cm} (1)

- This implies: if $\sigma : \tilde{M} \to M$ is inverse of collapse map, then \tilde{M} is correct about stationarity of every $\sigma^{-1}(R_i)$ (for $R_i \in M$ from the fixed partition).
- Again, M detects some 2nd order information.
Outline

- Notation and background
- Stationary set reflection and connections with:
 - Condensation of NS
 - Generic embeddings with critical point ω_2
- The Diagonal Reflection Principle (DRP)
- Forcing axioms imply DRP
 - And a detour involving $MA(\Gamma)$ and ideals whose positive-set-forcings are in Γ
Notation and background

- $\mathcal{P}_\kappa(H_\theta) := \{ M \prec H_\theta \mid |M| < \kappa \text{ and } M \cap \kappa \in \kappa \}$

- IA_{ω_1} is the class of M such that there is some \in-increasing, continuous elementary chain $\langle N_\alpha \mid \alpha < \omega_1 \rangle$ of countable elementary submodels of M such that
 - $\bigcup_{\alpha<\omega_1} N_\alpha = M$
 - Every proper initial segment of \vec{N} is element of M

- IC_{ω_1} defined similarly, except only require each $N_\alpha \in M$
 (equiv: $M \cap [M]_\omega$ contains a club)
Notation and background

- $\wp_\kappa(H_\theta) := \{ M \prec H_\theta \mid |M| < \kappa \text{ and } M \cap \kappa \in \kappa \}$

- IA_{ω_1} is the class of M such that there is some \in-increasing, continuous elementary chain $\langle N_\alpha \mid \alpha < \omega_1 \rangle$ of countable elementary submodels of M such that
 - $\bigcup_{\alpha<\omega_1} N_\alpha = M$
 - Every proper initial segment of \vec{N} is element of M

- IC_{ω_1} defined similarly, except only require each $N_\alpha \in M$
 (equiv: $M \cap [M]^{\omega}$ contains a club)

This talk focuses on $\wp_{\omega_2}(H_\theta) \cap IC_{\omega_1}$.
Stationary set reflection

Definition
A set S *reflects at* γ iff $S \cap \gamma$ is stationary in γ. A set $S \subset \kappa$ *reflects* iff there is a $\gamma < \kappa$ s.t. S reflects at γ.
Stationary set reflection

Definition
A set S reflects at γ iff $S \cap \gamma$ is stationary in γ. A set $S \subset \kappa$ reflects iff there is a $\gamma < \kappa$ s.t. S reflects at γ.

If κ is measurable (or just weakly compact), then:
- every stationary subset of κ reflects.
- $\forall \text{Col}(\omega_1, < \kappa) \models \text{“every stationary subset of } \omega_2 \cap \text{cof}(\omega) \text{ reflects”}$
 - The quoted statement is equiconsistent with a Mahlo cardinal (Harrington/Shelah)
Simultaneous stationary reflection

We can also require distinct sets to have a common reflection point. If κ is measurable, then:

- Every $< \kappa$-sized collection of stationary sets have a common reflection point

- $V^{Col(\omega_1, < \kappa)} \models$ "every ω_1-sized collection of stationary subsets of $\omega_2 \cap \text{cof}(\omega)$ have a common reflection point"
 - The quoted statement is equiconsistent with a weakly compact cardinal (Magidor)
Generalized stationary reflection

For stationary $R \subseteq [H_\theta]^\omega$, say R reflects to M iff $R \cap [M]^\omega$ is stationary in $[M]^\omega$.

- i.e. for every algebra \mathcal{A} on M, there is an $N \in R$ with $N \prec \mathcal{A}$.
Generalized stationary reflection

For stationary $R \subset [H_\theta]^\omega$, say R reflects to M iff $R \cap [M]^\omega$ is stationary in $[M]^\omega$.

- i.e. for every algebra \mathcal{A} on M, there is an $N \in R$ with $N \prec \mathcal{A}$.

“For every regular $\theta \geq \omega_2$, every stationary $R \subset [\theta]^\omega$ reflects to an M of size ω_1”:

- has powerful consequences if θ is large, e.g. failure of square, NS_{ω_1} is precipitous and more (F-M-S)
- follows from MM (Foreman-Magidor-Shelah)
- holds in $V^{Col(\omega_1,\kappa)}$ where κ is supercompact
Stationary reflection and condensation of NS

“R reflects to M” is equivalent to saying that the transitive collapse of M is correct about the stationarity of the preimage of R. (assuming M is sufficiently approachable)
Stationary reflection and condensation of NS

“R reflects to M” is equivalent to saying that the transitive collapse of M is correct about the stationarity of the preimage of R. (assuming M is sufficiently approachable)

Proof: (\iff): Suppose $R \in M$ reflects to M. Let $\sigma : \tilde{H} \to M$ and $\sigma(\tilde{R}) = R$. So $\tilde{H} \models \text{“}\tilde{R} \text{ is stationary.”}$

NTS: \tilde{R} is really stationary.

$\quad \Rightarrow$ In V let $\tilde{A} = (\tilde{H}, (\tilde{f}_n)_{n \in \omega})$

$\quad \Rightarrow$ Need to find a $\tilde{N} \prec \tilde{A}$ s.t. $\tilde{N} \in \tilde{R}$

$\quad \Rightarrow$ Use σ to transfer \tilde{A} to a structure $A = (M \cap H_\theta, (f_n)_n)$.

$\quad \Rightarrow$ Since $R \cap [M]^{\omega}$ is stationary and $M \cap [M]^{\omega}$ contains a club (this is the approachability requirement on M), there is an $N \in R \cap M \cap [M]^{\omega}$ such that $N \prec A$.

$\quad \Rightarrow$ Then $\sigma^{-1}(N) \in \tilde{R}$ and $\sigma^{-1}(N) \prec \tilde{A}$.
Other characterizations, and generic ultrapowers

Let $R \subset [H_\theta]^\omega$ be stationary, and $Z := \{ M \prec H_\Omega \mid M \cap H_\theta \in IC_{\omega_1} \}$ (where $\Omega > \theta$; note Z is stationary). TFAE:

1. R reflects to stationarily many $M \in Z$.
2. There are stationarily many $M \in Z$ such that R condenses correctly on M;
3. There is a stationary $S \subset Z$ such that whenever $j : V \to_G ult(V, G)$ is a generic ultrapower with $S \in G$, then R remains stationary in $ult(V, G)$.
 - not necessarily in $V[G]$
 - note: $cr(j) = \omega_2$
Other characterizations, and generic ultrapowers

Let $R \subset [H_\theta]^\omega$ be stationary, and $Z := \{M \prec H_\Omega \mid M \cap H_\theta \in IC_{\omega_1}\}$ (where $\Omega \gg \theta$; note Z is stationary). TFAE:

1. R reflects to stationarily many $M \in Z$.
2. There are stationarily many $M \in Z$ such that R condenses correctly on M;
3. There is a stationary $S \subset Z$ such that whenever $j : V \to_G ult(V, G)$ is a generic ultrapower with $S \in G$, then R remains stationary in $ult(V, G)$.
 ▶ not necessarily in $V[G]$
 ▶ note: $cr(j) = \omega_2$

The last characterization can be generalized (i.e. there is some normal filter F extending the club filter such that whenever U is a V-normal ultrafilter extending F, R remains stationary in $ult(V, U)$.)
The Diagonal Reflection Principle (DRP)

Definition
(C.) Let Z be a class of ω_1-sized sets (e.g. $Z = \text{IA}_{\omega_1}$ or $Z = \text{IC}_{\omega_1}$). $\text{DRP}(\theta, Z)$ means that there are stationarily many $M \prec H(\theta \omega)^+$ such that:

- $M \cap H_\theta \in Z$
- R reflects to M for every stationary $R \subset [H_\theta]^{\omega}$ which is an element of M.

For the rest of the talk, we fix $Z = \text{IC}_{\omega_1}$ and omit reference to it.

DRP means $\text{DRP}(\theta)$ holds for all regular $\theta \geq \omega_2$.
The Diagonal Reflection Principle (DRP)

Definition

(C.) Let Z be a class of ω_1-sized sets (e.g. $Z = \mathbf{IA}_{\omega_1}$ or $Z = \mathbf{IC}_{\omega_1}$). $\text{DRP}(\theta, Z)$ means that there are stationarily many $M \prec H(\theta \omega)$ such that:

- $M \cap H_\theta \in Z$
- R reflects to M for every stationary $R \subset [H_\theta]^{\omega}$ which is an element of M.

For the rest of the talk, we fix $Z = \mathbf{IC}_{\omega_1}$ and omit reference to it. DRP means $\text{DRP}(\theta)$ holds for all regular $\theta \geq \omega_2$.
Characterizations of DRP

Theorem
TFAE:

1. \(\text{DRP}(\theta) \)
2. There are stationarily many \(M \) such that \(\text{NS} \upharpoonright [M \cap H_\theta]^\omega \) condenses correctly via \(M \).
3. There is a stationary \(S \) such that whenever \(j : V \to G \) is a generic ultrapower with \(S \in G \), then all stationary subsets of \([H_\theta]^\omega \) from \(V \) remain stationary in \(\text{ult}(V, G) \)
 - not necessarily in \(V[G] \)!
 - again, \(cr(j) = \omega_2 \)
Characterizations of DRP

Theorem

TFAE:

1. \(DRP(\theta) \)
2. There are stationarily many \(M \) such that \(NS \upharpoonright [M \cap H_{\theta}]^{\omega} \)
 condenses correctly via \(M \).
3. There is a stationary \(S \) such that whenever \(j : V \rightarrow G \) ult\((V, G)\) is a generic ultrapower with \(S \in G \), then all stationarily subsets of \([H_{\theta}]^{\omega}\) from \(V \) remain stationary in
 ult\((V, G)\)
 ▶ not necessarily in \(V[G]! \)
 ▶ again, \(cr(j) = \omega_2 \)

So \(DRP(\theta) \) is a weaker version of the following statement:

“There is an ideal \(I \) such that \((I^+, \subseteq)\) is a proper forcing.”
Proper ideal forcings and well-determined generic embeddings with critical point ω_2

Suppose I is an ideal over $\wp_{\omega_2}(H_\theta)$ such that (I^+, \subset) is proper; it is known this implies I is precipitous. Let $j : V \to G \ult(V, G)$ be generic ultrapower; note $cr(j) = \omega_2$. Let $\tilde{\theta} := sup(j``\theta)$.

Let \tilde{S} partition $\theta \cap \text{cof}(\omega)$ into θ stationary sets, and assume $j(\tilde{S}) \in V$. Then $j \upharpoonright \theta \in V$.

Proper ideal forcings and well-determined generic embeddings with critical point ω_2

Suppose I is an ideal over $\varnothing_{\omega_2}(H_\theta)$ such that (I^+, \subset) is proper; it is known this implies I is precipitous. Let $j : V \rightarrow G \ ult(V, G)$ be generic ultrapower; note $cr(j) = \omega_2$. Let $\tilde{\theta} := sup(j^{``}\theta)$.

Let \tilde{S} partition $\theta \cap cof(\omega)$ into θ stationary sets, and assume $j(\tilde{S}) \in V$. Then $j \upharpoonright \theta \in V$.

Because $j^{``}\theta = \{\eta < j(\theta) \mid j(\tilde{S})_\eta \text{ reflects at } \tilde{\theta}\}$; this is primarily because:

- properness of I^+ implies for every $i < \theta$, S_i remains stationary in $ult(V, G)$ and so $j^{``}S_i$ is stationary there as well (note $j \upharpoonright H_\theta \in ult(V, G)$).
DRP and well-determined generic embeddings with critical point ω_2

 Aside from assuming $j(\tilde{S}) \in V$ and some degree of precipitousness, the points from the previous slide used only very weak consequences of "(I^+, \subset) is proper."

 In particular, minor variations of DRP can be used instead of the "(I^+, \subset) is proper" assumption.

 ▶ And variations of DRP follow from MM (later).
Chang ideals and DRP

(maybe skip)
Forcing Axioms and “Plus” versions

Definition

$MA^{+\alpha}(\mathbb{P})$ means for every ω_1-sized collection \mathcal{D} of dense sets and every α-sequence $S = \langle \dot{S}_i | i < \alpha \rangle$ of \mathbb{P}-names of stationary subsets of ω_1, there is a filter F which:

- meets every set in \mathcal{D}

- evaluates each name in S as a stationary set (i.e. $(\dot{S}_i)_F := \{ \beta < \omega_1 | (\exists q \in F)(q \Vdash \dot{\beta} \in \dot{S}_i) \}$ is stationary for each $i < \alpha$).

$MA^{+\alpha}(\Gamma)$ means $MA^{+\alpha}(\mathbb{P})$ holds for every $\mathbb{P} \in \Gamma$.
Forcing Axioms and “Plus” versions

Definition

\(MA^{+\alpha}(\mathbb{P}) \) means for every \(\omega_1 \)-sized collection \(D \) of dense sets and every \(\alpha \)-sequence \(S = \langle \dot{S}_i \mid i < \alpha \rangle \) of \(\mathbb{P} \)-names of stationary subsets of \(\omega_1 \), there is a filter \(F \) which:

- meets every set in \(D \)
- evaluates each name in \(S \) as a stationary set (i.e. \((\dot{S}_i)_F := \{ \beta < \omega_1 \mid (\exists q \in F)(q \Vdash \check{\beta} \in \dot{S}_i) \} \) is stationary for each \(i < \alpha \)).

\(MA^{+\alpha}(\Gamma) \) means \(MA^{+\alpha}(\mathbb{P}) \) holds for every \(\mathbb{P} \in \Gamma \).

- \(MA^{+}(\Gamma) \) means \(MA^{+1}(\Gamma) \).

- What I’m calling \(MA^{+\omega_1}(\Gamma) \) appears sometimes in the literature as \(MA^{++}(\Gamma) \) (and in Baumgartner’s original article as just one “plus”...).
Forcing Axioms and reflection

Theorem

(Baumgartner) $\text{MA}^+\omega_1(\sigma\text{-closed posets})$ implies that for every regular $\theta \geq \omega_2$, every ω_1-sized collection of stationary subsets of $\theta \cap \text{cof}(\omega)$ have a common reflection point of cofinality ω_1.

- Even for just $\theta = \omega_3$ the consistency strength of this kind of reflection is not known, but requires at least measurable cardinals of high Mitchell order.

Theorem

(Foreman-Magidor-Shelah): MM implies every stationary $R \subset [H_\theta]^\omega$ reflects to stationarily many sets in IA_{ω_1}.
Theorem

(C.) Assume $\text{MA}^+\omega_1 (\sigma$-closed posets). Then $\text{DRP} (\theta)$ holds for every regular $\theta \geq \omega_2$.
Forcing Axioms and DRP

Theorem
(C.) Assume $\text{MA}^+\omega_1$ (σ-closed posets). Then $\text{DRP}(\theta)$ holds for every regular $\theta \geq \omega_2$.

Theorem
(C.) Assume MM. Then $\text{wDRP}(\theta)$ holds for every regular $\theta \geq \omega_2$.
A nice characterization of forcing axioms

Theorem
(Woodin) TFAE for any separative poset \mathbb{P} (here $\theta \gg |\mathbb{P}|$):

1. $\text{MA}(\mathbb{P})$

2. $S_\mathbb{P}$ is stationary, where $S_\mathbb{P} := \{ M \prec H_\theta \mid \omega_1 \subset M \text{ and } (\exists g)(g \text{ is an } (M, \mathbb{P})\text{-generic filter)}\}$

(similar version for $\text{MA}^{+\alpha}(\mathbb{P})$)
A nice characterization of forcing axioms

Theorem

(Woodin) TFAE for any separative poset \(P \) (here \(\theta \gg |P| \)):

1. \(MA(P) \)
2. \(S_P \) is stationary, where \(S_P := \{ M \prec H_\theta \mid \omega_1 \subset M \text{ and } (\exists g)(g \text{ is an } (M, P)-\text{generic filter}) \} \)

(similiar version for \(MA^+\alpha(P) \))

- In particular, if say PFA holds then for every proper \(P \) there is a normal filter \(F_P \) concentrating on \(S_P \).
- (Shelah) However in ZFC there are proper \(P, Q \) such that \(S_P \cap S_Q \) is nonstationary.
MA(Γ) and ideals whose associated posets are in Γ

QUESTION: Is MA(Γ) consistent with the existence of ideals such that \((I^+, \subseteq) \in \Gamma\)?
QUESTION: Is $MA(\Gamma)$ consistent with the existence of ideals such that $(I^+, \subset) \in \Gamma$?

It is well-known that in $V^{Col(\omega_1,<\kappa)}$ where κ is supercompact:

- $MA^{+\omega_1}(\sigma\text{-closed})$ holds
- There are filters F on $\wp_\omega(H_\theta)$ such that (F^+, \subset) is equivalent to a $\sigma\text{-closed}$ forcing.
MA(Γ) and ideals whose associated posets are in Γ

QUESTION: Is $MA(Γ)$ consistent with the existence of ideals such that $(I^+, ⊂) ∈ Γ$?

It is well-known that in $V^{Col(ω₁,<κ)}$ where $κ$ is supercompact:

- $MA^{+ω₁}(σ$-closed) holds
- There are filters F on $犷_{ω₂}(Hθ)$ such that $(F^+, ⊂)$ is equivalent to a $σ$-closed forcing.

But also:

Theorem
(C.) It is consistent with a superhuge cardinal that PFA holds and for each proper P there is a normal filter F_P concentrating on S_P such that $(F_P^+, ⊂)$ is a proper forcing.
When \((I^+, \subset)\) completely embeds into another ideal forcing

By the Woodin characterization of \(MA(\Gamma)\), if \(MA(\Gamma)\) holds and \(I\) is an ideal such that \((I^+, \subset) \in \Gamma\), then \((I^+, \subset)\) completely embeds into another ideal forcing.

- namely, into the poset for \(NS \upharpoonright S_{(I^+, \subset)}\)

It is natural to ask if this complete embedding can be the same as the “lifting” map in the Rudin-Keisler sense.
When \((I^+, \subset)\) completely embeds into another ideal forcing

By the Woodin characterization of \(MA(\Gamma)\), if \(MA(\Gamma)\) holds and \(I\) is an ideal such that \((I^+, \subset) \in \Gamma\), then \((I^+, \subset)\) completely embeds into another ideal forcing.

- namely, into the poset for \(NS \upharpoonright S(I^+, \subset)\)

It is natural to ask if this complete embedding can be the same as the “lifting” map in the Rudin-Keisler sense.

Partial positive answer: there is a model of PFA starting from a super-2-huge cardinal, where there are \(I, J\) where both \((I^+, \subset)\) and \((J^+, \subset)\) are proper, \(I\) is the projection of \(J\) in the Rudin-Keisler sense, and this projection is also a \textit{forcing} projection.

(I don’t know if we can arrange that \(J\) is the NS ideal...
Proof: PFA^{ω_1} (just $MA^{\omega_1}(\sigma\text{-closed})$) implies $DRP(\theta)$.

$\mathbb{Q} :=$ continuous countable chains of models from $H(\theta \omega)^+$, ordered by end-extension.

Let $G \subset \mathbb{Q}$ be generic and $\langle N^G_\alpha \mid \alpha < \omega_1 \rangle$ the generic object. Note that in $V[G]$: $|H^V(\theta \omega)^+| = \omega_1$.

Let $\langle \dot{R}_\alpha \mid \alpha < \omega_1 \rangle$ be a name for enumeration of all stationary subsets of $[\theta]^\omega$ from the ground model.

$\dot{S}_\alpha :=$ indices of the models in \dot{R}_α.
Proof: $PFA^{+\omega_1}$ (just $MA^{+\omega_1}(\sigma\text{-closed})$) implies $DRP(\theta)$.

$\mathbb{Q} :=$ continuous countable chains of models from $H(\theta^{\omega})^+$, ordered by end-extension.

Let $G \subset \mathbb{Q}$ be generic and $\langle N^G_\alpha \mid \alpha < \omega_1 \rangle$ the generic object. Note that in $V[G]: |H(V)^{\theta^{\omega}}| = \omega_1$.

Let $\langle \dot{R}_\alpha \mid \alpha < \omega_1 \rangle$ be a name for enumeration of all stationary subsets of $[\theta]^\omega$ from the ground model.

$\dot{S}_\alpha :=$ indices of the models in \dot{R}_α.

Each \dot{S}_α names a stationary subset of ω_1 (b/c \mathbb{Q} is σ-closed so the set named by \dot{R}_α remains stationary).
proof, cont.

Let $S_Q \subset \wp_{\omega_2}(H(\theta \omega)^+)$ be the stationary set from the characterization of $MA^{+\omega_1}$.

So for every $M \in S_Q$: $\omega_1 \subset M$ and there is a g which is (M, \mathbb{Q})-generic such that $(\dot{S}_\alpha)_g$ is stationary for every $\alpha < \omega_1$.

Fix such an M and g. Note \vec{N}_g witnesses that a large initial segment of M is internally approachable. (density argument)

Let $R \in M$ be a stationary subset of $[H(\theta \omega)]^{\omega_1}$. Then $R = \dot{R}_g$ for some α. So $R \cap [M]^{\omega_1}$ contains the models in the generic chain indexed by $S_g \alpha$.
proof, cont.

Let $S_Q \subset \rho_{\omega_2}(H(\theta \omega)^+)$ be the stationary set from the characterization of $MA^{+\omega_1}$.

So for every $M \in S_Q$: $\omega_1 \subset M$ and there is a g which is (M, Q)-generic such that $(\dot{S}_\alpha)_g$ is stationary for every $\alpha < \omega_1$.

Fix such an M and g.

Note \vec{N}^g witnesses that a large initial segment of M is internally approachable. (density argument)

Let $R \in M$ be a stationary subset of $[H_\theta]^\omega$. Then $R = \dot{R}_\alpha^g$ for some α.

So $R \cap [M]^\omega$ contains the models in the generic chain indexed by S_α^g.
MM implies wDRP

Sketch: (forcing and proof rely heavily on Foreman’s paper): Conditions of the form \(\langle f(\beta), N_\beta \mid \beta \leq \delta \rangle \) where (fix some maximal antichain \(\langle T_\alpha \mid \alpha < \omega_1 \rangle \) which is pairwise disjoint):

1. \(\delta < \omega_1 \)
2. \(\vec{N} \) continuous \(\in \)-chain
3. \(f : \delta + 1 \rightarrow H_{\theta^+} \)
4. For every \(\beta < \delta \):
 - If \(f(\beta) \) is a stationary subset of \(\theta \cap \text{cof}(\omega) \), then for all limit \(\beta' \in (\beta, \delta] \cap T_\beta \) require that \(\sup(N_{\beta'} \cap \theta) \in f(\beta) \).
outline of proof

- $D_R := \{(f, \vec{N}) | R \in \text{range}(f)\}$ is dense
- $D_\alpha := \{q \in \mathbb{Q} | \alpha < \delta^q\}$ is dense for each $\alpha < \omega_1$
- stationary set preservation
outline of proof

- \(D_R := \{(f, \vec{N})| R \in \text{range}(f)\} \) is dense
- \(D_\alpha := \{q \in \mathbb{Q}| \alpha < \delta^q\} \) is dense for each \(\alpha < \omega_1 \)
- stationary set preservation

Then let \(S_\mathcal{Q} \) be the stationary set of \(M \in \wp_\omega_2(H_{\theta^+}) \) for which a generic exists.

- Every \(R \in M \) is of the form \(f^{g_M}(\beta) \) some \(\beta < \omega_1 \)
- So the points in the generic chain indexed by \(T_\beta \) (above \(\beta \)) witness that \(R \) reflects to \(\text{sup}(M \cap \theta) \).
Final remarks

Corollary

Strong forcing axioms imply there are generic embeddings which weakly resemble generic embeddings by proper ideal forcings.
Final remarks

Corollary

Strong forcing axioms imply there are generic embeddings which weakly resemble generic embeddings by proper ideal forcings.

Similar ideas can use $MM^{+\omega_1}$ to form a kind of product of certain s.s.p. forcings.
Assume MM and that for each stationary set preserving \mathbb{P} there is a precipitous ideal whose dual concentrates on $S_\mathbb{P}$.

- What more can we say about these generic embeddings?
- e.g. when \mathbb{P} is the s.s.p. poset from above used to show MM implies diagonal reflection?