Speculations on nature of set theoretic truth: A thesis in 4 parts followed by 4 conjectures

W. Hugh Woodin

University of California, Berkeley

September 21, 2011
A thesis in four parts
The axioms of ZFC

Axiom 1 (Extensionality) Two sets A and B are equal if and only if they have the same elements.

Axiom 2 (Pairing) If A and B are sets then there exists a set $C = \{A, B\}$ whose only elements are A and B.

Axiom 3 (Union) If A is a set then there exists a set C whose elements are the elements of the elements of A.

Axiom 4 (Regularity or Foundation) If A is a set then either A is empty (i.e. A has no elements) or there exists an element C of A which is disjoint from A.

Axiom 5 (Comprehension) If A is a set and $\varphi(x)$ formalizes a property of sets then there exists a set C whose elements are the elements of A with this property.
Axiom 6 (Powerset) If A is a set then there exists a set C whose elements are the subsets of A.

Axiom 7 (Axiom of Choice) If A is a set whose elements are pairwise disjoint and each nonempty then there exists a set C which contains exactly one element from each element of A.

Axiom 8 (Replacement) If A is a set and $\varphi(x)$ formalizes a property which defines a function of sets then there exists a set C which contains as elements all the values of this function acting on the elements of A.

Axiom 9 (Infinity) There exists a set W which is nonempty and such that for each element A of W there exists an element B of W such that A is an element of B.
The axioms of ZFC_0: Finite set theory

Axiom 1 (Extensionality) Two sets A and B are equal if and only if they have the same elements.

Axiom 2 (Bounding) There exists a set C such that every set is a subset of C.

Axiom 3 (Union) If A is a set then there exists a set C whose elements are the elements of the elements of A.

Axiom 4 (Regularity) If A is a set then either A is empty or there exists an element C of A which is disjoint from A.

Axiom 5 (Comprehension) If A is a set and $\varphi(x)$ formalizes a property of sets then there exists a set C whose elements are the elements of A with this property.
Axiom (6a) (Powerset) For all sets A one of the following holds.
 ▶ $\mathcal{P}(A)$ exists
 ▶ there exists a set C such that $V = \mathcal{P}(C)$ and A is not an element of C

Axiom (6b) (Powerset) For all sets A one of the following holds.
 ▶ $\mathcal{P}(A)$ exists
 ▶ there exist $B \in A$ and $C \subseteq B$ such that $C \notin A$
 ▶ $V = \mathcal{P}(A)$

Axiom 7 (Axiom of Finiteness) If A is a nonempty set then there is an element B of A such that for all sets C, if C is an element of A then B is not an element of C.
The cumulative hierarchy

Definition

Define for each ordinal α a set V_α by induction on α.

1. $V_0 = \emptyset$.
2. $V_{\alpha + 1} = \mathcal{P}(V_\alpha) = \{X \mid X \subseteq V_\alpha\}$.
3. If β is a limit ordinal then $V_\alpha = \bigcup\{V_\beta \mid \beta < \alpha\}$.

- It is a consequence of the ZFC axioms that for each set A there exists an ordinal α such that $A \in V_\alpha$.
- The ZFC$_0$ axioms (1)-(6) imply that $V = V_{\alpha + 1}$ for some ordinal α, adding Axiom (7), α is finite.
For each finite ordinal $n > 0$, $V_n \models \text{ZFC}_0$.

- ZFC_0 is a very weak theory.

Theorem

ZFC_0 proves its own consistency.

- But ZFC_0 does not prove there is a model of ZFC_0.

The axioms of the form

“V_n exists”

for specific n are “large cardinal” axioms for ZFC_0.
Theorem (after Gödel)

There is a sentence Φ such that for all models $(M, E) \models ZFC_0$

the following are equivalent:

1. $(M, E) \models \Phi$.
2. $(M, E) \models \text{“ZFC}_0 \vdash (\neg \Phi)\text{”}$
The sentence Φ_0

Φ_0 asserts:

1. V_n exists where $n = |V_{1000}|$.
2. There is a proof of ($\neg \Phi_0$) with length at most 10^{24} from the theory:

$$ZFC_0 + \text{"} V_n \text{ exists where } n = |V_{1000}| \text{"}.$$
Φ_0 if true is physically verifiable from the witness.

- Φ_0 is a meaningful statement about the actual physical universe.

Question

Is Φ_0 true?

- Of course not. But we have no evidence (physical or mathematical) that Φ_0 is false.

Claim

Any coherent basis (at present) for the assertion that Φ_0 is false must also yield that the conception of V_n where $n = |V_{1000}|$ is meaningful.
Any coherent basis for the mathematical claim of the consistency of a formal (recursive) theory T must be paired ultimately with a conception of mathematical objects with structure, whose existence implies the consistency of T.
Consistency and independence in ZFC

- ω_1 is the least uncountable ordinal
 - it is the set of all countable ordinals.

Definition

1. A set $C \subseteq \omega_1$ is **closed** if for all $\alpha < \omega_1$ if $C \cap \alpha$ is cofinal in α then $\alpha \in C$.

2. A set $S \subseteq \omega_1$ is **stationary** if $S \cap C \neq \emptyset$ for all closed, cofinal, sets $C \subseteq \omega_1$.

- The sets, $S \subset \omega_1$, which are stationary and co-stationary are the simplest manifestation of the Axiom of Choice.
- How complicated is the structure of the stationary, co-stationary, subsets of ω_1?
 - Can exist a small generating family for these sets?
The combinatorics of stationary subsets of ω_1

A precise question along these lines is the following:

Question

Can there exist ω_1 many stationary sets, $\langle S_\alpha : \alpha < \omega_1 \rangle$, such that for every stationary set $S \subseteq \omega_1$, there exists $\alpha < \omega_1$ such that $S_\alpha \subseteq S$ modulo a non-stationary set?

The assertion that $S_\alpha \subseteq S$ modulo a non-stationary set is simply the assertion that the set,

$$S_\alpha \setminus S = \{ \beta < \omega_1 \mid \beta \in S_\alpha \text{ and } \beta \notin S \},$$

is not stationary.

Observation

*Such a sequence, $\langle S_\alpha : \alpha < \omega_1 \rangle$, of stationary subsets of ω_1 would give in a natural sense, a basis for the stationary subsets of ω_1 which is of cardinality ω_1.***
Infinite games on ω and Determinacy Axioms

- Associated to a set $A \subseteq \mathbb{R}$ is an infinite game involving two players, Player I and Player II. The players construct a function, $f : \omega \to \{0, 1\}$, in stages,

 (Stage 0) : Player I specifies $f(0)$,
 (Stage 1) : Player II specifies $f(1)$,
 (Stage 2) : Player I specifies $f(2)$,

 After infinitely many stages a function $f : \omega \to \{0, 1\}$ is constructed.

- Player I wins this run of the game if

 $$\sum_{k=0}^{\infty} f(k)2^{-(k+1)} \in A,$$

 otherwise Player II wins.
Strategies

A strategy is a function

\[\tau : \{ s : k \rightarrow \{0, 1\} \mid k \in \omega \} \rightarrow \{0, 1\} \]

and a player follows \(\tau \) in a run of the game yielding \(f \) if at each stage \(k \) for that player, \(f(k) = \tau(f|k) \).

Definition (Mycielski, Steinhaus: 1961)

The Axiom of Determinacy, AD, is the axiom which asserts that for all sets \(A \subseteq \mathbb{R} \) there is a winning strategy for either Player I or Player II in the game given by \(A \).

- AD contradicts the Axiom of Choice.

Question

Is the Axiom of Choice necessary to construct a set \(A \subseteq \mathbb{R} \) for which the corresponding game is not determined?
Large Cardinal Axioms

Basic template for (modern) large cardinal axioms

A cardinal κ is a large cardinal if there exist an ordinal α, a transitive set M, and an elementary embedding,

$$j : V_\alpha \rightarrow M$$

such that κ is the least ordinal such that $j(\beta) \neq \beta$.

▶ $\text{CRT}(j)$ denotes the least ordinal β such that $j(\beta) \neq \beta$.
 ▶ If j is the identity on α then j is the identity on V_α.
 ▶ One can require more sets to belong to M, possibly in a way that depends on the action of j on the ordinals.
 ▶ A hierarchy of notions.
 ▶ (Axiom of Choice) If $M = V_\alpha$ then either $\alpha = \lambda$ or $\alpha = \lambda + 1$ where λ is the supremum of $\langle \kappa_i : i < \omega \rangle$, $\kappa_0 = \text{CRT}(j)$ and for all $i < \omega$, $\kappa_{i+1} = j(\kappa_i)$.
Three theories

| Theory 1 | ZFC + “There exist ω_1 many stationary sets, $\langle S_\alpha : \alpha < \omega_1 \rangle$, such that for every stationary set $S \subseteq \omega_1$, there exists $\alpha < \omega_1$ such that $S_\alpha \subseteq S$ modulo a non-stationary set”.
 |
| Theory 2 | ZF + AD |
| Theory 3 | ZFC + “There exist infinitely many Woodin cardinals”. |

Theorem

These three theories are equiconsistent.
The conception of the universe of sets with the structure from large cardinals can account for all possible consistency claims.
Two large cardinal axioms in ZF

Definition: κ is an Enormous Cardinal

There exist $\kappa < \lambda < \gamma$ and an elementary embedding

$$j : V_{\lambda+1} \rightarrow V_{\lambda+1}$$

such that

1. $\kappa = \text{CRT}(j)$ and $\lambda > \kappa$ is least such that $j(\lambda) = \lambda$,
2. $V_\lambda \prec V_\gamma$.

Definition: κ is a Weak Reinhardt Cardinal

There exist $\kappa < \lambda < \gamma$ and an elementary embedding

$$j : V_{\lambda+2} \rightarrow V_{\lambda+2}$$

such that

1. $\kappa = \text{CRT}(j)$ and $\lambda > \kappa$ is least such that $j(\lambda) = \lambda$,
2. $V_\lambda \prec V_\gamma$.
Theorem (Kunen)

Assume the Axiom of Choice. Suppose λ is an ordinal and

$$j : V_{\lambda+2} \rightarrow V_{\lambda+2}$$

is an elementary embedding. Then j is the identity.

Corollary (ZFC)

There are no Weak Reinhardt Cardinals.

Theorem (ZF)

Assume there is a Weak Reinhardt Cardinal. Then

$$ZFC + \text{“There is a proper class of Enormous Cardinals”}$$

is consistent.

- Must the Axiom of Choice be abandoned for Thesis (Part 2)?
The effective cumulative hierarchy: \(L \)

The definable power set

For each set \(X \), \(\mathcal{P}_{\text{Def}}(X) \) denotes the set of all \(Y \subseteq X \) such that \(X \) is logically definable in the structure \((X, \in)\) from parameters in \(X \).

- (Axiom of Choice) \(\mathcal{P}_{\text{Def}}(X) = \mathcal{P}(X) \) if and only if \(X \) is finite.

Gödel's constructible universe, \(L \)

Define \(L_\alpha \) by induction on \(\alpha \) as follows.

1. \(L_0 = \emptyset \),
2. (Successor case) \(L_\alpha + 1 = \mathcal{P}_{\text{Def}}(L_\alpha) \),
3. (Limit case) \(L_\alpha = \bigcup\{L_\beta \mid \beta < \alpha\} \).

\(L \) is the class of all sets \(X \) such that \(X \in L_\alpha \) for some ordinal \(\alpha \).

- (Scott) Assume \(V = L \). There are no (modern) large cardinals.
Definition

For each ordinal α, $\text{HOD}_{\alpha+1}$ is the set of all sets $a \subseteq V_\alpha$ such that:

1. a is definable in V_α from ordinal parameters.
2. If $b \in \text{TC}(a)$ then b is definable in V_α from ordinal parameters.

where for each set a, $\text{TC}(a)$ is the smallest transitive set M with $a \in M$.

▶ The definition of $\text{HOD}_{\alpha+1}$ is a mixture of the definition of $L_{\alpha+1}$ and $V_{\alpha+1}$.

Definition

HOD be the class of all sets a such that $a \in \text{HOD}_{\alpha+1}$ for some α.

▶ If the existence of a proper class of Enormous Cardinals is consistent then the existence is consistent with $V = \text{HOD}$.
A class N is Σ_2-definable if there is a formula $\varphi(x_0)$ such that

$$N = \bigcup \{ a \mid V_\alpha \models \varphi[a] \text{ for some ordinal } \alpha \}.$$

L is Σ_2-definable.

$\langle V_\alpha : \alpha \in \text{Ord} \rangle$ is Σ_2-definable.

HOD is Σ_2-definable.

A class N is Σ_2-definable if there is a formula $\varphi(x_0, x_1)$ and a set b such that

$$N = \bigcup \{ a \mid V_\alpha \models \varphi[a, b] \text{ for some ordinal } \alpha \}.$$
Definition: $N[X]$

Suppose that N is a transitive class and X is a transitive set. Then $N[X]$ is the smallest transitive class M such that

1. $N \subseteq M$ and $X \cap M \in M$
2. $M \models ZF$

Definition: $N(X)$

Suppose that N is a transitive class and X is a transitive set. Then $N(X)$ is the smallest transitive class M such that

1. $N \subseteq M$ and $X \in M$
2. $M \models ZF$

Lemma

Suppose N is Σ_2-definable. Then $N(X)$ and $N[X]$ are each Σ_2-definable.
Vopenka’s Theorem

Theorem (Vopenka)

*For each transitive set X:

1. $\text{HOD}[X]$ is a generic extension of HOD;
2. $\text{HOD}(X)$ is a symmetric generic extension of HOD.*

Corollary (ZF)

Suppose that κ is a Weak Reinhardt Cardinal. Then κ is a Weak Reinhardt Cardinal in some symmetric generic extension of HOD.

Speculation

*Perhaps a multiverse conception based on generic extensions could provide a framework for truth which:

- Accounts for the consistency of Weak Reinhardt Cardinals,
 - avoiding having to abandon the Axiom of Choice.
- Avoids having to settle the Continuum Hypothesis.*
Definition

Suppose that M is a countable transitive set and that $M \models \text{ZFC}$.

The *generic-multiverse* generated by M is the smallest set \mathcal{V}_M of countable transitive sets such that for all pairs (N_0, N_1) of countable transitive sets if

1. N_1 is a generic extension of N_0
2. either $N_0 \in \mathcal{V}_M$ or $N_1 \in \mathcal{V}_M$

then both $N_0 \in \mathcal{V}_M$ and $N_1 \in \mathcal{V}_M$.

(meta) Definition

*The Generic-Multiverse is the generic-multiverse generated by V.***
The Generic-Multiverse and truth

The generic-multiverse view of truth

A sentence φ is a Generic-Multiverse truth if φ holds in each universe of the Generic-Multiverse.

This can be formally reduced to truth within V.

There is a (recursive) transformation of sentences giving φ^* from φ such that:

Theorem

For all countable transitive sets M the following are equivalent.

1) $M \models \varphi^*$.

2) $N \models \varphi$ for each $N \in \mathcal{V}_M$.
The Resurrection Theorem

- A Σ_2-sentence is a sentence of the form:

 "There exists α such that $V_\alpha \models \psi$"

- A Π_2-sentence is a sentence of the form:

 "For all α, $V_\alpha \models \psi$"

Theorem (Resurrection Theorem)

Suppose there is a proper class of Woodin cardinals and that φ is a Σ_2-sentence true in V. Then for each universe N of the Generic-Multiverse, φ is true in some generic extension of N.

Corollary

*Suppose that there is a proper class of Woodin cardinals and that φ is a Π_2-sentence. Then the following are equivalent.

1. φ is true in all generic extensions of V.
2. φ is true in all universes of the Generic-Multiverse.*
Example

Suppose \(\psi \) is a sentence and consider the \(\Pi_2 \)-sentences

- “\(V_{\omega+2} \models \psi \)”
- “\(V_{\omega+2} \models (\neg \psi) \)”

Suppose there is a proper class of Woodin cardinals and that neither of the sentences a Generic-Multiverse truth.

Suppose \(N \) is a universe of the Generic-Multiverse. Then:

- There are generic extensions of \(N \) in which “\(V_{\omega+2} \models \psi \)”.
- There are generic extensions of \(N \) in which “\(V_{\omega+2} \models (\neg \psi) \)”.

- \(V_{\omega+2} \) can be replaced by \(V_{\omega+3}, V_{\omega+10000}, V_{\delta_0+1} \) where \(\delta_0 \) denotes the least Woodin cardinal, etc.
Thesis: Part 3 in two parts

Part A

The conception of Π_2 truth must be at least as strong as that given by the Generic-Multiverse.

Part B

For the conception of Π_2 truth, the only possibilities are

1. V (Set Theoretic Platonism)
 - For each sentence ψ, the sentence “$V_{\omega+2} \models \psi$” has determinate truth value etc.

2. The Generic-Multiverse.
Another consequence of the Resurrection Theorem

Assume ZF and that there is a Weak Reinhardt Cardinal. Suppose that

\[\text{HOD} \models \text{"There is a proper class of Woodin cardinals."} \]

Consider the generic multiverse generated by HOD.

- If \(N \) is a universe of this generic-multiverse then there is a symmetric extension of \(N \) in which there is a Weak Reinhardt Cardinal.

This suggests that the Generic-Multiverse conception of truth might be able to account for the consistency with ZF of the existence of Weak Reinhardt Cardinals.
The first multiverse law

Definition (For a given multiverse)

1. For any universe N, $(\delta_0)^N$ denotes the first Woodin cardinal of N.
2. A sentence φ is a multiverse truth of V_{δ_0+1} if for each universe N of the multiverse,

$$
(V_{\delta_0+1})^N \models \varphi.
$$

The First Multiverse Law

The set of Π_2-sentences which are multiverse truths is not recursive in the set of multiverse truths of V_{δ_0+1}.

- The multiverse given by all ω-models $N \models \text{ZFC} + \text{“There is a proper class of Woodin cardinals”}$ violates the First Multiverse Law.
The second multiverse law

Definition (For a given multiverse)

A set \(X \subseteq V_\omega \) is definable in \(V_{\delta_0+1} \) across the multiverse if for each universe \(N \) of the multiverse, \(X \) is logically definable in \((V_{\delta_0+1})^N\) without parameters.

The Second Multiverse Law

The set of \(\Pi_2 \)-sentences which are multiverse truths, is not definable in \(V_{\delta_0+1} \) across the multiverse.

- The multiverse given by all \(\omega \)-models

 \[N \models \text{ZFC + “There is a proper class of Woodin cardinals”} \]

 satisfies the Second Multiverse Law.
The conception of a multiverse of sets should not violate both the multiverse laws.

Therefore if the Generic-Multiverse is to be the basis for Π_2 truth:

The Generic-Multiverse must satisfy one of the multiverse laws.

- The multiverse laws are really a family of laws indexed by (Σ_2-definitions of) δ:
 - here δ is the first Woodin cardinal.
- The “smaller” the choice of δ, the “weaker” the laws.
- Taking $\delta = \omega + 2$ yields the weakest (plausible) versions, these are the Weak Multiverse Laws.
Predictions
Ω-logic
(The logic of the Generic-Multiverse)

Definition
Suppose φ is a Π_2-sentence. Then

$$\models_\Omega \varphi$$

if φ holds in all generic extensions of V.

Theorem

Suppose there is a proper class of Woodin cardinals and that φ is a Π_2-sentence.

*Then φ is a Generic-Multiverse truth if and only if $\models_\Omega \varphi$.***
Universally Baire sets

Definition (Feng-Magidor-Woodin)

A set $A \subseteq \mathbb{R}$ is universally Baire if for all topological spaces, S, and for all continuous functions,

$$F : S \to \mathbb{R},$$

the preimage of A by F has the property of Baire in the space S (differs from an open set by a meager set).

Example: If $A \subseteq \mathbb{R}$ is borel then A is universally Baire.

Theorem (after et al)

Suppose there is a proper class of Woodin cardinals and $A \subseteq \mathbb{R}$ is universally Baire. Then

1. $L(A, \mathbb{R}) \models AD$,

2. Every set $B \in \mathcal{P}(\mathbb{R}) \cap L(A, \mathbb{R})$ is universally Baire.
Strong closure

Definition

Suppose that $A \subseteq \mathbb{R}$ is universally Baire and suppose that M is a countable transitive model of ZFC.

Then M is *strongly A-closed* if for all countable transitive sets N such that N is a generic extension of M,

$$A \cap N \in N.$$

- If M is strongly A-closed then $A \cap M \in M$. But this alone does not suffice.
The definition of $\models_\Omega \varphi$

Definition

Suppose there is a proper class of Woodin cardinals. Suppose that φ is a Π_2-sentence.

Then $\models_\Omega \varphi$ if there exists a set $A \subseteq \mathbb{R}$ such that:

1. A is universally Baire,

2. for all countable transitive models, M, if M is strongly A-closed then

 $M \models "\models_\Omega \varphi"$.

$\models_\Omega \varphi$ is invariant across the Generic-Multiverse.
The Ω Conjecture

Theorem (Ω Soundness)
Suppose that there exists a proper class of Woodin cardinals and suppose that φ is Π_2-sentence.

If $\vdash_\Omega \varphi$ then $\models_\Omega \varphi$

Definition (Ω Conjecture)
Suppose that there exists a proper class of Woodin cardinals and suppose that φ is a Π_2-sentence.

Then $\models_\Omega \varphi$ if and only if $\vdash_\Omega \varphi$.

- The Ω Conjecture is invariant across the Generic-Multiverse.
Theorem (Fundamental Theorem of Ω-logic)

Suppose there is a proper class of Woodin cardinals and that the Ω Conjecture holds.

Let \mathcal{V}_Ω be the set of all Π_2-sentences φ such that $\models_{\Omega} \varphi$. Then:

1. \mathcal{V}_Ω is recursive in the set of Generic-Multiverse truths of V_{δ_0+1}.
2. \mathcal{V}_Ω is definable in V_{δ_0+1}.

(1) can be strengthened to \mathcal{V}_Ω is recursive in the set of Generic-Multiverse truths of $V_{\omega+2}$ (which is best possible).

Corollary

Suppose there is a proper class of Woodin cardinals and that the Ω Conjecture holds. Then the Generic-Multiverse violates both multiverse laws.
Predictions: Conjecture 1

The Ω Conjecture is a theorem of ZFC.
Supercompact and extendible cardinals

Definition: \(\delta \) is a supercompact cardinal

For each ordinal \(\gamma > \delta \) there exist \(\bar{\delta} < \bar{\gamma} < \delta \) and an elementary embedding

\[j : V_{\bar{\gamma}+1} \rightarrow V_{\gamma+1} \]

such that \(\text{CRT}(j) = \bar{\delta} \) and \(j(\bar{\delta}) = \delta \).

Definition: \(\delta \) is an extendible cardinal

For each ordinal \(\gamma > \delta \) there exists an elementary embedding

\[j : V_{\gamma+1} \rightarrow V_{j(\gamma)+1} \]

such that \(\text{CRT}(j) = \delta \) and such that \(j(\delta) > \gamma \).
Definition: Extenders

Suppose that

\[j : V_{\delta+1} \to M \]

is an elementary embedding. Suppose \(\text{CRT}(j) < \alpha \) and \(V_{\alpha+1} \subset M \).

- The extender \(E \) of strength \(\alpha \) derived from \(j \) is the function
 \[E : V_{\delta+1} \to V_{\alpha+1} \]
 defined by \(E(a) = j(b) \cap V_\alpha \).

- Define \(\text{CRT}(E) \) to be the least ordinal \(\xi \) such that \(E(\xi) \neq \xi \).
- Suppose that \(E \) is the extender of strength \(\alpha \) derived from \(j \). Then \(\text{CRT}(j) = \text{CRT}(E) \).
Weak extender models

Definition

A \(\Sigma_2 \)-definable transitive class \(N \) is a weak extender model of \(\delta \) is supercompact if \(\delta \) is supercompact in \(N \) and this is witnessed by the class of \(F \in N \) such that

1. \(F \) is an extender in \(N \),
2. there is an extender \(E \) of \(V \) such that \(E \cap N = F \).

The Inner Model Program is the attempt to build weak extender models for various large cardinal notions—subject to non-triviality requirements.

- The models produced are generalizations of \(L \).
Mitchell-Steel models

Theorem (after Mitchell-Steel, Steel)

Suppose there is a proper class of Woodin cardinals. Then there is a Σ_2-definable transitive class N such that:

1. N is a weak extender model of δ is a Woodin cardinal for a proper class of δ.
2. $N \subseteq \text{HOD}$.
3. Every set $A \subseteq \text{Ord}$ is generic over N.
4. Suppose that there is a supercompact cardinal. Then every set $A \in N(\mathbb{R})$ is universally Baire.

The supercompact is far stronger than necessary but some additional hypothesis is necessary.
The Universality Theorem

Theorem (Universality Theorem)

Suppose that N is a weak extender model of δ is supercompact. Suppose that F is an extender such that:

- $\text{CRT}(F) \geq \delta$ and N is closed under F.

Then $F \cap N \in N$.

- For any extender F, L is closed under F but $F \cap L \notin L$.

Corollary

Suppose that N is a weak extender model of δ is supercompact and that $\kappa > \delta$ is an extendible cardinal. Then N is a weak extender model of κ is supercompact.

- Any weak extender model of δ is supercompact inherits all large cardinals from V which occur above δ.
Theorem

Suppose there is a proper class of supercompact cardinals and that N is a weak extender model of δ is supercompact such that

1. Every set $A \in N(\mathbb{R})$ is universally Baire.
2. Every set bounded $A \subset \delta$ is generic over N.

Then $N \models \text{“The } \Omega \text{ Conjecture”}$.

By the Universality Theorem one cannot hope to prove the existence of such N from any large cardinal hypothesis.

- The correct conjecture would be that such N exist in some generic extension of V.
Predictions: Conjecture 2

Conjecture

(ZFC) Suppose that δ is an extendible cardinal. Then there is a transitive class N such that:

1. N is a weak extender model of δ is supercompact.
2. Every bounded set $A \subset \delta$ is generic over N.
3. $N \subseteq \text{HOD}$ and N is Σ_2-definable from δ.
4. $N \models \text{“The } \Omega \text{ Conjecture”}$.

- The conjecture implies that no large cardinal hypothesis can refute the Ω Conjecture.
By the Universality Theorem:

The successful extension of the Inner Model Program to the level of exactly one supercompact cardinal yields an ultimate version of L.

- Finding the corresponding ultimate version of the axiom, “$V = L$”, is possibly a much harder problem.

Definition

Suppose that $A \subseteq \mathbb{R}$ is universally Baire.

Then $\Theta^L(A, \mathbb{R})$ is the supremum of the ordinals α such that there is a surjection, $\pi : \mathbb{R} \to \alpha$, such that $\pi \in L(A, \mathbb{R})$.

- $\text{HOD}^L(A, \mathbb{R})$ denotes HOD as defined in $L(A, \mathbb{R})$.

Theorem

Suppose that there is a proper class of Woodin cardinals and that A is universally Baire.

Then $\Theta^L(A, \mathbb{R})$ is a Woodin cardinal in $\text{HOD}^L(A, \mathbb{R})$.
The axiom for $V = \text{Ultimate-L}$?

A sentence φ is a Σ_3-sentence if it is of the form:

- There exists α such that $V_\alpha \models \psi$ and such that $V_\alpha \prec_{\Sigma_2} V$; for some sentence ψ.

(meta) Conjecture: The axiom for $V = \text{Ultimate-L}$

There is a proper class of Woodin cardinals. Further for each Σ_3-sentence φ, if φ holds in V then there is a universally Baire set $A \subseteq \mathbb{R}$ such that

$$\text{HOD}^L(A,\mathbb{R}) \cap V_\Theta \models \varphi$$

where $\Theta = \Theta^L(A,\mathbb{R})$.

- This axiom settles (modulo axioms of infinity) all sentences about $\mathcal{P}(\mathbb{R})$ (and much more) which have been shown to be independent by Cohen’s method.
Consequences of $V = \text{Ultimate-L}$

<table>
<thead>
<tr>
<th>Theorem ($V = \text{Ultimate-L}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Continuum Hypothesis holds.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem ($V = \text{Ultimate-L}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Ω Conjecture holds.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem ($V = \text{Ultimate-L}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V is the minimum universe of the Generic-Multiverse.</td>
</tr>
</tbody>
</table>

In contrast:

Suppose N is a Mitchell-Steel extender model and there is a Woodin cardinal in N then:

- N is **not** the minimum universe of the generic-multiverse generated by N even restricting to Mitchell-Steel extender models in that multiverse.*
Predictions: Conjecture 3

Ultimate-L Conjecture

(ZFC) Suppose that δ is an extendible cardinal. Then there is a transitive class N such that:

1. N is a weak extender model of δ is supercompact.
2. Every bounded set $A \subset \delta$ is generic over N.
3. $N \subseteq \text{HOD}$ and N is Σ_2-definable from δ.
4. $N \models \text{"V} = \text{Ultimate-L"}$.

Theorem (ZF)

Suppose that the Ultimate-L Conjecture is provable from ZFC. Then there are no Weak Reinhardt Cardinals.
Claim

The structure involved in the construction of Mitchell-Steel weak extender models at the level of Woodin cardinals arguably suffices to validate consistency claims at the level of Woodin cardinals.

A claim and a (serious) problem

The structure involved in the construction of the weak extender model N witnessing Ultimate-L Conjecture cannot suffice to validate consistency claims beyond the level of one supercompact cardinal.

Theorem (Ultimate-L Conjecture)

Suppose that δ extendible cardinal. Then there is a weak extender model N witnessing the Ultimate-L Conjecture at δ and a class generic extension $V[G]$ such that for all α:

1. $V[G]_\alpha \not\models \text{ZFC + "There is a supercompact cardinal"}$.
2. In $V[G]$, N satisfies all the requirements of the Ultimate-L Conjecture at δ.
Conjecture

\((V = \text{Ultimate-L})\) Suppose that \(\lambda > \omega\) is a cardinal such that

\[L(V_{\lambda + 1}) \nsubseteq \text{Axiom of Choice}. \]

Then there exists a non-trivial elementary embedding

\[j : V_{\lambda + 1} \rightarrow V_{\lambda + 1}. \]

- The existence of a Very Enormous Cardinal implies the existence of \(\lambda\) such that
 \[L(V_{\lambda + 1}) \nsubseteq \text{Axiom of Choice}. \]
- Assuming Conjecture 3 and the consistency of the existence of a Very Enormous Cardinal, Conjecture 4 cannot be vacuously true.
 - It is vacuously true for Mitchell-Steel extender models.
Conjecture 4 is a conjecture of rich structure associated in Ultimate-L to large cardinals.

- There is a generic extension of L in which:

 $$L(\mathbb{R}) \not\models \text{“Axiom of Choice”}.$$

Theorem (Steel)

Suppose N is a Mitchell-Steel weak extender model. Then the following are equivalent in N:

1. $L(\mathbb{R}) \not\models \text{Axiom of Choice}.$
2. $L(\mathbb{R}) \models \text{AD}.$
The ultimate (meta) conjecture

(meta) Conjecture

Large cardinal axioms above the level of one supercompact cardinal will be validated by their structural consequences for Ultimate-L.

- Ultimate-L has the ultimate structure associated to large cardinals.
- This structure is equivalent in Ultimate-L to the occurrence of large cardinals.
- This structure implies $V = \text{Ultimate-L}$ in the context of large (enough) cardinals.