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Peter Koellner

I can on no way agree to taking
‘intuitively clear’ as a criterion
of truth in mathematics, for this
criterion would mean the
complete triumph of
subjectivism and would lead to
a break with the understanding
of science as a form of social
activity.

Markov (1962)

Feferman is arguably the foremost critic of set theory since Weyl. His paper
“Is the continuum hypothesis a definite mathematical problem?” provides a
useful overview of his negatie answer, drawing on many papers over many
years. The main thesis is that the continuum hypothesis (CH) is an “in-
definite” statement and that the underlying reason is that the “concept of
arbitrary set [which is essential to the formulation of CH] is vague or under-
determined” and “there is no way to sharpen it without violating what it is
supposed to be about.” (1)

In what follows I am will exposit and extend Feferman’s critique, argue
that each component fails, and conclude that when the dust settles the entire
case rests on the claim that the concept of natural number is clear while the
concept of arbitrary sets of natural numbers is not clear. My stance on this
final resting point is captured in the above quotation from Markov.
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1 Overview

The paper “Is the Continuum Hypothesis a definite mathematical problem?”
gives an account of his main reasons for thinking that CH is not a definite
mathematical problem. The arguments are of two kinds—direct and indirect
(or circumstantial). The direct arguments are based on (a) the meta-theory
of set theory and (b) a philosophical view of the nature of mathematics (in
particular, an anti-platonist view). This is nicely summarized in “Philosophy:
5 Questions”:

I came to the conclusion some years ago that CH is an inherently
vague problem (see, e.g., the article (2000) cited above). This
was based partly on the results from the metatheory of set theory
showing that CH is independent of all remotely plausible axioms
extending ZFC, including all large cardinal axioms that have been
proposed so far. In fact it is consistent with all such axioms
(if they are consistent at all) that the cardinal number of the
continuum can be anything it ought to be, i.e. anything which is
not excluded by Konigs theorem. The other basis for my view is
philosophical: I believe there is no independent platonic reality
that gives determinate meaning to the language of set theory
in general, and to the supposed totality of arbitrary subsets of
the natural numbers in particular, and hence not to its cardinal
number.

The circumstantial argument is based on a thought experiment involving
the Millenium Prize Problems. Feferman claims that this thought experi-
ment shows that the mathematical community has implicitly endorsed his
claim that CH is an indefinite statement. This is nicely brought out in the
continuation of the above quoted passage:

Incidentally, the mathematical community seems implicitly to
have come to the same conclusion: it is not among the seven
Millennium Prize Problems established in the year 2000 by the
Clay Mathematics Institute, for which the awards are $1,000,000
each; and this despite the fact that it was the lead challenge in
the famous list of unsolved mathematical problems proposed by
Hilbert in the year 1900, and one of the few that still remains
open.
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This structure is also present in the paper “Is the Continuum Hypothe-
sis a definite mathematical problem?”. There are three main sections: (1)
The first section presents the indirect (or circumstanial) argument involving
the Millenium Prize Problems. (2) The second section presents the direct
argument, covering both (a) the metamathematical argument and (b) the
argument pertaining to the nature of mathematics. (3) The third section
presents a framework in which one can articulate claims of the form “ϕ is
indefinite” for various statements ϕ.

We can quickly dispense with the third section, where Feferman provides
a framework for articulating statements of the form “ϕ is indefinite”. This
work is of interest in its own right but for two reasons it does not have bearing
on our present concerns: First, the work could at most be used to articulate
the claim that CH is indeterminate but not argue for that claim. Second, and
more to the point, even by Feferman’s own admission, the notion of formal
definiteness that he provides ia “a very crude criterion of definiteness” and
we “need more refined notions of definiteness/indefiniteness to throw light
in whether CH is a definite statement”; in fact, as far as the results are
concerned, it is not even known if one of the systems that Feferman provides
is suitable for expressing the claim (let alone arguing for it) that CH is
indeterminate.

I should begin by laying my cards on the table: I am agnostic on the
question of whether CH is a mathematical problem and I have pursued
frameworks—multiverse conceptions, the approach via incompatible Ω-complete
theories, the approach via incompatible ultimate inner models—on which the
indefiniteness of CH might be maintained. I also have enormous respect for
Feferman and his work and have learned more from it than from practically
any other philosophically oriented logician. Nevertheless, I think that the
results that Feferman cites and the arguments that he gives in this paper do
not provide any reasons for believing that CH is an indefinite statement. I
will make this case as forcefully as I can and I hope that the reader appreci-
ates that in presenting the criticisms in so direct a manner my goal is only
to place the fundamental issues in the sharpest possible light.

2 The Indirect Argument

The thought experiment involving the Millenium Prize Problems is supposed
to provide “considerable circumstantial evidence to support the view that CH
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is not definite”.
Here is the background: The Clay Mathematics Institute of Cambridge,

Massachusetts established seven Millenium Prize Problems. The prizes were
announced in Paris on May 24, 2000. One of the problems on the list—
namely, the Riemann Hypothesis—also appears on the famous list of twenty-
three problems that Hilbert presented on August 9, 1900.

Feferman notes that CH (which was on Hilbert’s list) is not on the prize
problem list and he imagines a discussion between the prize problem advisory
board and a group of set theorists to determine whether CH is suitable for
inclusion on the list. The set theorists explain some of the advances in the
program for large cardinal axioms—in particular, the work of Martin, Steel,
and Woodin, which showed (among other things) that large cardinal axioms
settled the classic undecided statements of second-order arithmetic (largely
through implying PD) and statements somewhat further up in the complexity
hierarchy (namely, statements about L(R)). The panel expresses concerns
over whether large cardinal axioms are acceptable and, setting this aside,
inquire about the situation with CH. The set theorists then explain that (in
contrast to the case of PD) large cardinal axioms (of the variety discovered
so far) do not settle CH and they go on to give a (mistaken) account of
Woodin’s approach to settling CH.1 The board ends up concluding that CH
is not suitable for inclusion. What does this show?

Feferman takes this as evidence that mathematical community has im-
plicitly accepted his conclusion that CH is not a definite mathematical prob-
lem. But the whole issue is tied up with an ambiguity involved in the word
‘problem’. One must draw a distinction between a statement (say an open
problem) being indefinite and a task (say settling an open problem) being
indefinite. Feferman is claiming that the statement (the open problem) CH
is indefinite. But the facts about the scientific advisory boards conjectured
behaviour shows at most that the task of settling CH is insufficiently de-
limited to warrant placing one million dollars on the implementation of the

1Feferman writes: “ “Some of the experts think that one of the most promising avenues
is that being pursued by Woodin (2005a, 2005b) via his strong Ω-logic conjecture which,
if true, would imply that the cardinal number of the continuum is ℵ2.” This is mistaken.
First, the Strong Ω Conjecture does not logically imply anything about the size of the
continuum; rather, assuming it there is a very involved argument (not a proof) to the
effect that CH is false. Second, the argument is that CH is false, not that the continuum
has size ℵ2. To get the stronger conclusion one need a different argument, one involving
maximality considerations.
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task. The task “Settle CH” is not sufficiently definite to warrant inclusion
on the list since it is known that any resolution of CH is going to involve
subtle issues surrounding the justification of new axioms. For this reason,
no set theorist (even a set theorist who was firmly convinced that CH is a
definite mathematical problem) would dream of making a case that CH should
be included on the list. Once one is clear on this ambiguity one sees that the
scientific advisory board’s conjectured behaviour does not lend support to
the claim that CH is no a definite statement.2 Let me elaborate on this with
three points:

First, the panel wants problems where the solution is going to be relatively
uncontroversial. This is entirely reasonable since there is a million dollars
riding on the implementation of the task. The panel is thus looking for
“a complete mathematical solution to one of the problems” and there is a
systematic procedure for determining this—“a proposed solution must be
published in a refereed mathematics publication of worldwide repute”; “it
must also have general acceptance in the mathematics community two years
after”; etc. It is clear that CH does not meet these criteria and the reason
it does not meet these criteria is independent of whether it is a definite
mathematical problem or not.

Second, imagine a parallel case involving a strong statement of arithmetic.
Harvey Friedman has constructed statement of arithmetic that have attracted
the attention of number theorists. The statements have the look and feel of
statements that can be resolved in a weak system like PA but they actually
require strong assumptions (as measured by the large cardinal hierarchy) for
their resolution. Suppose a Friedman-like statement catches the interest of
number theorists and becomes a central problem and it has the feature that
it is known to require strong assumptions but it is not known which way the
answer will come out when one adds those assumptions. Suppose further that
Friedman forgets whether or not the statement in question required strong
assumptions for its resolution.

2Of course, certain members of the board or the mathematical community (like Fefer-
man) might believe that stronger statement. But using the behaviour of the board—which
would also be the behavior of a board of set theorists who believed that CH is a definite
statement—to draw such a sociological conclusion is to rest a case on an ambiguity. (Be-
sides, even if this was a prevalent sociological fact what should we takes its significance to
be? It used to be a sociological fact that irrational numbers (negative numbers, complex
numbers, curves that were not constructible via Cartesian mechanical process) did not
exist. But the significance of such sociological facts is rather fleeting.
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Suppose Friedman takes such a statement and gets a number theorist
interested. The number theorist works on it over the weekend and is un-
successful. a number theorist takes such a problem and spends the weekend
working on it only to learn later that it is not resolvable using the assumptions
being employed—it requires much stronger assumptions; just as in the case
of PD it requires statements of strong (large cardinal) consistency strength.
Should the panel learn of the metamathematical facts they would certainly
not include these problems on the list. And this would not indicate that
these arithmetical statements are not definite. It would simply reflect the
fact that any proposed solution would have to rest on the case for large
cardinal axioms and that case will be subtle and controversial.

Third, there are related problems that one could put on the list, namely,
one could take a conjecture of the form “ϕ is provable in T” and put that
conjecture on the list, where ϕ is one of the above statements of arithmetic or
CH and T is a strong system. Here is an example of such a conjecture: Let T
be the theory discussed in the final section of my paper “On the Question of
Absolute Undecidability”. (It involves ZFC, the large cardinal assumption
I0, and the structural axioms (A) and (B).) The question is: Assume
T . Does CH hold? That would actually be a remarkable result! And the
resolution of it is clear enough to warrant inclusion on the list.

In short, what changed between 1900 (when Hilbert presented his list) and
2000 (when the Clay Institute presented their list) is that independence in
arithmetic and set theory became a reality. From that time onward it became
clear that unless a statement was expected to be resolvable in one of the
standardly accepted systems—like PA or ZFC—then one had better render
the task (not the statement of the problem) more precise by conditioning on
the conjectured necessary background assumptions. The problems on the
Millenium Prize list are expected to be resolvable in the standard systems.
In the case of CH we are even at a loss for interesting theorems of the form
“Assume T . Then CH.” That alone is reason for not including CH—even
in a conditional form—on the list. To answer the question of whether the
statement CH is not definite—as opposed to whether the task “Resolve CH”
is not sufficiently definite for inclusion on the list—one is going to have to
dig deeper, even if one is only looking for circumstanial evidence.
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3 The Direct Argument

The direct argument has two components. The first component concerns
the nature of mathematics. Here Feferman argues that platonism is unten-
able and in its place he advocates what he calls “conceptual structuralism”.
The position of conceptual structuralism is supposed to support the main
thesis that CH is an indefinite statement. The second component concerns
the metamathematics of set theory. Here Feferman argues that the meta-
mathematical situation in set theory is distinctively different than that in
first-order arithmetic and, moreover, in a way that supports the thesis that
CH is an indefinite statement.

3.1 The Nature of Mathematics: “Platonism” Versus
Conceptual Structuralism

There are two opposing extreme views concerning the nature of mathematics.
One extreme maintains that the mathematical realm is completely indepen-
dent of our practices—it is outside of the space-time manifold, lying eternal
in a third realm. This view is often called platonism (with grave injustice to
Plato) and the challenge for this view has been to explain what by its lights
would appear to be a miracle, namely, how our practice of proving things
(“down here”) can manage to track the nature of things (“up there”). In
other words, the challenge for this view is to overcome the alienation prob-
lem, that is, the problem that on this view truth is (in Tait’s words) alienated
from proof. The other extreme maintains that the mathematical realm is re-
ally just a projection of our practice. This certainly overcomes the alienation
problem but it leads to the objectivity problem, that is, the problem that on
this view mathematics would seem to be like fiction, an area where we have
more control than we appear to have in the case of mathematics.3

It appears that when discussing platonism it is the above extreme version
that Feferman has in mind and accordingly it is “[t]he well-known difficulties
of platonism have left it with few if any adherents” (9). It should be borne
in mind that few if any people ever held such a view and that there are many
platonist today. For example, for recent versions of platonism—versions that

3For what it is worth my own view is that each of these pictures is exceedingly naive
and that when one tries to cash out the metaphors one finds that they fall through one’s
fingers. The truth lies in between.
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do not lead to the alienation problem—see Tait and Maddy. In any case, if
this is the above extreme view is indeed the target, then Feferman is certainly
right to be drawn in the other direction.

But I fear that Feferman is drawn too far. For in drawing away from
the alienation problem it appears that he embraces the other extreme and so
faces the objectivity problem.

My claim is that the basic conceptions of mathematics and their
elaboration are also social constructions and that the objective
reality that we ascribe to mathematics is simply the result of
intersubjective objectivity about those conceptions and not about
a supposed independent reality in any platonistic sense. (13)

It would take us too far afield to enter a detailed discussion of Feferman’s
conceptual structuralism. But it will be helpful to discuss the view briefly
and separate the central tenants of the view from various applications of it.

The centerpiece of the view is that “The basic objects of mathematical
thought exist only as mental conceptions”.4 These “[b]asic conceptions differ
in their degree of clarity. One may speak of what is true in a given concep-
tion, but that notion of truth may only be partial. Truth in full is applicable
only to completely clear conceptions.” “What is clear in a given concep-
tion is time dependent, both for the individual and historically.” “The
objectivity of mathematics lies in its stability and coherence under repeated
communication, critical scrutiny and expansion by many individuals often
working independently of each other.” These are the central tenets of the
view.

The first point I wish to make is that the central tenants of conceptual
structuralism are consistent with the claim that CH is definite. Of course,
conceptual structuralism is flexible enough to incorporate the idea that CH is
indefinite.5 The point is that it is also flexible enough to incorporate the idea
that CH is definite (just as, in Feferman’s particular application of it, it is

4I suspect that this is not literally what Feferman means. Take the case of number
theory. I don’t think that he intends to say that every individual number exists as a
mental construction can’t since that would equip us with highly idealized conceptual pow-
ers (consider very large numbers, much larger than (current estimate of) the number of
fundamental particles in the universe). He seems to be saying that the concept of natural
number (with 0, successor, addition, etc.) exists as a mental construction. For more on
this kind of view see Tony Martin’s “Gödel’s Conceptual Realism”.

5“[T]his view of mathematics does not require total realism about truth values. That
is, it may simply be undecided under a given conception whether a given statement in
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flexible enough to embody the idea that statements of first-order arithmetic
are definite).6

Now, Feferman does go further. He applies the framework in such a way
that it applies asymmetrically to number theory and set theory. The concept
of natural number is deemed in such a way that there are no truth-value
gaps—it is sufficiently robust to ensure that every statement of first-order
number theory is definite (in that it has a determinate truth value). The
concept of arbitrary subset of natural number is deemed in such a way that
there are gaps—it is insufficiently robust to ensure that statements of second-
order or third-order number theory are definite; in particular, CH comes out
indefinite. How does this come about?

At the general level Feferman maintains that “The objectivity of math-
ematics is a special case of intersubjective objectivity that is ubiquitous in
social reality.” (12) Here I think that there is already a problem. The assim-
ilation of mathematical objectivity with intersubjective objectivity in social
reality is a mistake. To see this it is helpful to consider counterconventional
conditionals (in the sense of Iris Einheuser): Compare: “If the political struc-
ture wer different in such a way that there were no countries then PK would
not be a Canadian citizen.” “If there were no humans (and hence no human
concepts) then there would not be infinitely many prime numbers”. In the
case of the latter statement there are two ways of reading it. On the first
reading we imagine how things look in the counterfactual situation (where
there are no humans); in that situation there would (by hypothesis) be no
people to talk about the prime numbers. Nevertheless, on a different read-
ing, we can use the conceptual apparatus here to talk about that situation
and, using that apparatus, we can still say that there are still infinitely many
prime numbers. That fact—the infinitude of the prime numbers—is not “in-
jured” by the absence of people. The situation with the other statement—the
one about citizenship—is entirely different. The second reading cannot get a
foothold. There is no way of thinking of me being a Canadian citizen (or there
being any Canadian citizens) in the counterfactual situation: citizenship is

the language of that conception has a determinate truth value, just as, for example, our
conception of the government of the United States is underdetermined as to the presidential
line of succession past a certain point.” (13)

6For example, the central tenets of conceptual structuralism are quite close to those of
Tony Martin’s version of conceptual realism and Daniel Isaacson’s structuralism. Martin’s
view CH is a definite problem (provided that the concept of set is non-vacuous). Isaacson’s
view is that CH is a definite problem.
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too intimately tied to the political structures. Take away the structures and
you take away citizenship. In short, there is an asymmetry between the case
of mathematical objectivity and social objectivity, one that is not tracked by
Feferman’s assimilation.

But all of that is a bit off of our main topic. The main point I wish
to stress is that conceptual structuralism does not on its own say anything
about whether or not a given conception (the natural numbers, arbitrary sets
of natural numbers) leads to definite or indefinite statements. We are thus
provided with a flexible framework, one that is capable of being applied to
views on which CH is definite and also to views on which CH is indefinite. So
the framework alone is not going to illuminate the question of definiteness.
For that we are going to have to turn to other considerations, like those
addressed in the next section.

3.2 The Meta-Mathematical Arguments

The meta-mathematical arguments concern the difference between first-order
arithmetic (where Feferman maintains that all statements are definite) and
second- and third-order arithmetic and set theory (where Feferman maintains
that many statements are indefinite). In this section I want to go beyond Fe-
ferman’s critique and examine many more aspects of the meta-mathematical
situation. In each case I will cite results showing that there is a parallel
between the case of first-order arithmetic and second- and third-order arith-
metic, thereby undermining the asymmetrical stance.

(A) Conceptions of the Continuum. Feferman notes that there
are many conceptions of the continuum, some physical, some having to do
with intuition, some purely mathematical. Even narrowing down on the
purely mathematical there are still many conceptions—Euclidean, Hilbertian,
Dedekindian, set-theoretic.7 But the point is that none of this is a direct
relevance to the question at hand since CH is a statement of set theory and
set theorists are quite clear (internal to set theory) on what question they
are asking.8

7Incidentally, there is a parallel in the case of number theory; for example, there is the
ordinal conception and the cardinal conception.

8It is true that there are several different formulations—for example, you can take the
reals to be 2ω, ωω, P(ω), etc.—but they are all (easily proved to be) equivalent and set
theorists pass back and forth between the formulations with so ease and without confusion.
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(B) Full SO Categoricity. Some have maintained that the quasi-
categoricity results in set theory ensure that CH is a definite problem. For ex-
ample, Kreisel and, more recently, Isaacson, maintain this. It is thus claimed
that there is a parallel between first-order arithmetic and second-order arith-
metic (and third-order arithmetic and any “height-definite” fragment of set
theory) in that categoricity secures definiteness in both realms.

Feferman rejects these results since he maintains that they beg the ques-
tions at the metalevel through their employment of full second-order logic, a
logic that is entangled with set theory in an intimate manner. I agree with
much of this. (See my “Strong Logics of First and Second Order.”)

Feferman concludes that first-order arithmetic and second-order arith-
metic (and third-order arithmetic and “height-definite” fragments of set the-
ory) are indeed parallel with regard to categoricity but that that is because
in each case the categoricity results have no (or little) bearing on the question
of definiteness. I agree. We are going to have to look deeper if we are going
to find the crucial asymmetry between the two cases.

(C) Schematic Categoricity.9 It is worth mentioning that there is
another version of categoricity, one that does not employ full second-order
logic, namely, what might be called schematic or internal categoricity. The
idea dates back to Parson’s 1990 Iyunn paper and is pursued further in his
recent book Mathematical Thought and Its Objects”. The idea is that in
being committed to the natural numbers we are committed to accepting
induction for any predicate that we come to accept. Suppose two people
have their respective number systems, 〈N, 0, S, . . .〉 and 〈N ′, 0′, S ′, . . .〉. If
each accepts the others number predicate (N , respectively, N ′ in the range of
their induction schema then together they can show that the natural mapping
π (sending 0 to 0′ and S(n) to S ′(π(n)) is an isomorphism.10

I do not want to enter a discussion of the philosophical significance of
such results. I just want to point out (as Tony Martin observes in his paper
“Multiple Universes of Sets and Indeterminate Truth-Values” that the situ-
ation in set theory is exactly parallel. So we are going to have to dig deeper
if we are going to find the crucial asymmetry between the two cases.

9This is a point that Feferman does not discuss.
10This works over weak systems like I∆0, provided one treats the induction axiom as

schematic. The idea is schematic. For example, it does not presuppose working over
PA—it scales up and down as long as one remains schematic at each level.
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(D) Non-Standard Models. There is an approach to finding an asym-
metry between the two cases that rests on non-standard models. In the case
of arithmetic when you build a non-standard model its non-standardness is
immediately revealed since the standard part is a proper subset of the entire
structure. Some have thought that the case is quite different in set theory.

But the case in set theory is exactly parallel. Take a case like Cohen’s
method of forcing where you build a non-standard model. In the case of
forcing there are two standard model-theoretic ways of doing this. In the
first approach one starts with a countable transitive model M of the theory
in question (say ZFC) and one adds a generic object. The point is that all
of this is done within set theory and it is revealed in the first step that one
is dealing with a non-standard model since it is a countable object. In the
second approach one builds class size models (and do the above point is no
longer applicable) but one builds a Boolean-valued model V B and, once again,
it is immediately revealed that it is non-standard. So, once again, arithmetic
and set theory are parallel in this regard. We have to keep digging.

(E) Facility in constructing models. Some (for example, Hamkins)
have cited the facility with which we can manipulate models of set theory
as evidence that certain statements of set theory are not determinate. For
example, given a countable transitive model M of ZFC we can force to obtain
an extension M [G0] that satisfies CH and then force again to obtain an
extension M [G0, G1] that satisfies ¬CH and then force again to obtain an
extension M [G0, G1, G2] that satisfies CH, and so on. We can flip CH on and
off like a switch. This god-like control has led some to think that it indicates
that CH is not definite.

But exactly the same thing holds in the setting of first-order arithmetic
and the reason is that there are Orey sentences of first-order arithmetic. Let
ϕ be an Orey sentence for PA. (One can choose theories other than PA and
one can arrange that ϕ is quite simple—it can be ∆0

1 (provably over PA (or
over which ever background theory one is working with)).) Such a sentence
has the feature that if we take a model M of PA we can end-extend it to
obtain a model M ′ in which ϕ holds and then end-extend that model to
obtain a model M ′′ in which ¬ϕ holds, and so on. If the above argument
concerning CH is a good one then this god-like control should indicate that
ϕ is not a definite statement. But Feferman (and most people) think that
all statements of first-order arithmetic are definite. The main point is that
once again, arithmetic and set theory are parallel in this regard. We have to
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keep digging.

(F) Flexible Orey Sentences. One might try to argue that set theory
is different in that there are flexible Orey sentences like PD and CH. For
example, PD has the feature that it is not just an Orey sentence over ZFC
but it also remains an Orey sentence when one supplements ZFC with large
cardinal axioms (measurable, strong, etc) until at a certain point (in the
region of Woodin cardinals) it ceases to be an Orey sentence.

But in joint work with Woodin we showed that the situation in first-order
arithmetic is exactly the same. There are even flexible Orey sentences which
parallel CH. (This work was done quite some time ago and is unpublished.
I have included some of it in the appendix.)

In each of the above cases (the first two of which are considered by Fe-
ferman) one has an attempt to isolate an asymmetry between the case of
arithmetic and number theory—one that argues for definiteness in the first
case and indefiniteness in the second. But in each case the attempt fails.
The cases are parallel.

3.3 The Final Retreat: Clarity

What then is the key difference? The only thing remaining (so far as Fefer-
man has argued and so far as I can see) has to do with clarity:

We have a clearer conception of what it means to be an arbitrary
infinite path through the full binary tree than of what it means
to be an arbitrary subset of N, but in neither case do we have a
clear conception of the totality of such paths, resp. sets.

I don’t understand the first point. Feferman must mean that when we first
encounter these notions the first is clearer than the second. But by his own
admission clarity is something that evolves over time. And it doesn’t take
long for the two notions to become equally clear since after five minutes of
explanation any student will come to see that one can pass from one to the
other and back again with ease.

The main point that is relevant for our purposes is the second point.
Feferman thinks that we do not have a clear conception of an (arbitrary)
path through the binary tree (or, equivalently, the idea of an arbitrary subset
of natural numbers). And yet he thinks that we have a clear conception
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of the natural numbers. This, I have argued, is what the entire case for
asymmetrical treatment ultimately rests on.

The difficulty I have with this is embodied in the quote from Markov at
the beginning of this paper. The concept of clarity is not sufficiently clear. It
is too subjectivistic. Intuitions of clarity are not robust. Some people think
that the concept of an arbitrary subset of natural numbers is about as clear a
conception as one can have; others disagree. Whose intuitions are to count?
We are hear dealing with a notion—one that is carrying all of the weight of
Feferman’s case, or so I have argued—where there is not even the kind of
intersubjective objectivity that is had by the cases of social realism that he
cites.

I certainly agree that the concept of (an arbitrary) natural number is
clear and at times I am willing to agree that it is clearer than the concept of
an (arbitrary) path through the binary branching tree. I want here to put a
bit more pressure on these initial judgments.

To begin with, most students when they learn of these matters find (at
least in my experience) each of the conceptions to be clear. It is only when
one learns more about the metamathematical subtleties involved the situation
becomes more complex and the initial judgements become more suspect.

What, for example, are we saying when we say that the concept of the
natural numbers is clear? Are we just saying that the idea of starting with 0,
taking successors, and continuing indefinitely is clear? And what does this
idea of continuing indefinitely really mean? Is the conception clear in such a
way that intrinsically justifies all of PA? If so, then it is clear in such a way
that it intrinsically justifies the totality of the Ackermann function. But the
totality of that function (although I am certain of it) is far from being clear
in a sharp sense of the term.

It seems to me that when most people say that the concept of natural
numbers is clear they are really talking about this pre-theoretic underlying
idea of starting with 0 and iterating successor indefinitely.11 The questions,
then, of the form “Does there exist a natural number with property P?”
(say, of coding up a proof of 0=1 from ZFC + “0# exists”) are questions that
are not necessarily settled on the basis of this underlying conception.

The situation with paths through the binary branching tree is clear.
When people first learn of it they take it to be quite clear. But then (just as

11One might even set up I∆0 in a schematic form and articulate internal categoricity
results to lend substance to the underlying idea.
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in the case of number theory) there arise questions of the form “Does there
exists a path coding up 0#?” that are not necessarily settled on the basis of
that underlying conception. It is clear that the simply definable paths exist
(just as it is clear that the small numbers that we can count to exist) but as
we climb up to stronger and stronger statements these matters become less
clear and that fact does not (in either case) injure the idea that the initial
conception with which we started is quite clear.

4 Conclusion

I have argued that the indirect argument rests on an ambiguity and that once
one is clear on the difference between an indefinite statement and an indefinite
task the thought experiment does not provide circumstantial evidence that
the mathematical community has implicitly endorsed the view that CH is an
indefinite statement. I have argued that Feferman’s conceptual structuralism
is flexible enough to be applied to views that CH is definite and views that
CH is indefinite but, on its own, does not make a pronouncement one way or
the other. I have argued that in each of the metamathematical arguments
provided by Feferman (and many others provided by me and by other people)
there is in fact a parallel between the case of first-order and second-order
arithmetic (and, more generally, set theory). Finally, in the end, when all
the dust settles the entire case rests on the claim that the concept of natural
numbers is clear while the concept of arbitrary natural numbers is not clear.
Here I side with Markov.

Appendix

The following material is taken from my unpublished paper “Independence
in Arithmetic and Set Theory”:

The questions motivating this work have to do with the attempt to find
analogues of set-theoretic independence in arithmetic. This is best explained
in terms of interpretability degrees.

Let us write T1 6 T2 to indicate that T1 is (relatively) interpretable in
T2. For all of the theories that we shall consider this is equivalent to saying
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that the Π0
1-consequences of T1 are a subset of the Π0

1-consequences of T2.
12

We shall write T1 < T2 to indicate that T1 6 T2 and T2 
 T1; and we shall
write T1 ≡ T2 to indicate that T1 6 T2 and T2 6 T1.

In terms of interpretability there are three possible ways in which a state-
ment ϕ can be independent of a theory T .

(1) (Single Jump) Only one of ϕ or ¬ϕ leads to a jump in strength, that
is,

T + ϕ > T and T + ¬ϕ ≡ T

(or likewise with ϕ and ¬ϕ interchanged).

(2) (No Jump) Neither ϕ nor ¬ϕ lead to a jump in strength, that is,

T + ϕ ≡ T and T + ¬ϕ ≡ T.

(3) (Double Jump) Both ϕ and ¬ϕ lead to a jump in strength, that is,

T + ϕ > T and T + ¬ϕ > T.

Each of these possibilities is realized. For the first it suffices to take the
Π0

1-sentence Con(T ). (The non-trivial direction (T + ¬ϕ 6 T ) is due to
Feferman, building on work of Hilbert and Bernays.) For the second it is
easy to see that there is no example that is Π0

1 and, in fact, that there is
no example that is Boolean Π0

1; however, there are examples that are ∆0
2;

examples of this type of independence are called Orey sentences.13 For the
third kind of independence there are Π0

1 instances. (This is a corollary of
Lemma 14 on pages 128–129 of Lindström 2003.)

It is of interest to ask whether there are “natural” non-metamathematical
instances of these kinds of independence in arithmetic and set theory. Let
us discuss what is known. There is no known example (in either arithmetic
or set theory) of the third kind of independence and it seems quite unlikely
that there will ever be such an example. So our discussion will concentrate
on the first two kinds of independence.

There are many natural examples of the first kind of independence in
the set theoretic case. The most natural way to extend PA is by iterating

12We shall assume that all of our theories can interpret PA and are essentially reflexive.
13In these notes, unless otherwise specified, ∆0

2 will mean provably ∆0
2 in PA.
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the powerset and thereby arriving at the theories PA2, PA3, etc. Continu-
ing this into the transfinite one arrives at ZFC and its extensions by large
cardinal axioms such as the axioms “There is a strongly inaccessible car-
dinal” and “There are ω many Woodin cardinals.” These theories provide
a natural way of climbing the hierarchy of interpretability. Let us refer to
this sequence of theories as the coarse canonical sequence. This sequence is
canonical in that (a) it is well-ordered under interpretability and (b) it is a
remarkable empirical fact that theories throughout the spectrum of theories
can be compared (in terms of interpretability) by showing that each is mu-
tually interpretable with a theory on this sequence. However, one problem
with this sequence is that it is rather coarse. Even at the lowest level, there
is a lot of room between PA and PA2; for example, one has the theories
PA + Con(PA), PA + Con2(PA), . . . and much more.14 For this reason it is
also natural to consider the fine canonical sequence by which we mean the
sequence of theories obtained by replacing T in the canonical sequence with
PA+

⋃
n<ω(T �n) and interpolating the finer levels of consistency strength by

iterating the consistency statements.
There are two natural questions that arise. First, are there natural arith-

metical statements that lie in the interpretability degrees of the theories in
the coarse canonical sequence? There are some preliminary results in this
direction. To begin with recall that there are some arithmetical instances
of the first kind of independence, most notably the Paris-Harrington theo-
rem. Unfortunately, this statement does not lie in an interpretability degree
of the coarse canonical sequence. However, Harvey Friedman has initiated a
program of finding such statements (even natural Π0

1-statements) throughout
the entire hierarchy of interpretability.

Question 1. Are their natural arithmetical statements that lie in the inter-
pretability degrees of the theories in the canonical sequence?

Second, are their natural arithmetical statements that are mutually in-
terpretable with PA + Con(PA), PA + Con2(PA), . . . . More generally:

Question 2. Are there natural arithmetical statements that lie in the inter-
pretability degrees of the theories in the fine canonical sequence?

Let us now turn to the second kind of independence. Once again there
are many natural examples of this kind of independence in the set theoretic

14Here Con2(PA) is Con(PA + Con(PA)).

17



case. For example, the statement that all projective sets have a projective
uniformization (PU) and the continuum hypothesis (CH) are examples of
this kind of independence. However, there are no known natural examples
of such Orey sentences in the case of arithmetic.

Question 3. Are there natural examples of Orey sentences for PA?

This problem appears quite difficult—-it would seem to involve the develop-
ment of an analogue of set-theoretic forcing for arithmetic and for this we do
not even have a clear and definite test question that would signal success.

Going further one can ask for finer parallels with the set theoretic case.
For example, although both PU and CH are Orey sentences for ZFC they have
additional features. To begin with the are both “flexible” Orey sentences in
that they are Orey sentences not just for ZFC but also for ZFC + “There is
a strongly inaccessible cardinal” and much stronger theories in the canonical
sequence.

Question 4. Are there natural examples of “flexible” Orey sentences for PA?

Moreover, PU and CH are different in a key respect. For in the case of
PU when one climbs the canonical sequence sufficiently high it is actually
resolved; more precisely, it becomes resolved positively when one reaches
the theory ZFC + “For every n < ω, there are n Woodin cardinals with a
measurable above them all”. In contrast, CH is not resolved by any large
cardinal axioms. namely, as one climbs the hierarchy of interpretability along
the “canonical sequence” one eventually reaches axioms that settle PU but
this does not appear to be the case for CH. Let us elaborate on this.

Question 5. Are there natural examples of “flexible” Orey sentences for PA
that become resolved only when one reaches a certain point in the (extended)
canonical sequence?

Question 6. Are there natural examples of “flexible” Orey sentences for PA
that are not resolved by any theory in the (extended) canonical sequence?

The philosophical interest of these last two questions is this: Con(PA) and
other consistency statements have the feature that if one knows that they are
independent then one knows that they are true. In contrast, Orey sentences
like PU and CH are provably independent of ZFC in a weak theory (assuming
Con(ZFC), of course) but this knowledge of independence provides no insight
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whatsoever as to whether or not they are true. So one thing we wish to
know is whether there are analogues of this phenomenon in arithmetic. For
this purpose we do not demand that the arithmetical sentences be natural.
Furthermore, it is sensible as a preliminary step to relax the demand of
seeking natural statements if one is to hope to make a first step in approaching
Questions 3 and 4.

. . .

Analogue of PD

The standard construction of an Orey sentence for PA (see below) yields a
sentence which is settled in PA+Con(PA).15 We should like an Orey sentence
that resembles PU in that it is (a) a “flexible” Orey sentence in that it is
not just an Orey sentence for PA but also for much stronger theories in the
fine canonical sequence and (b) it is settled at a certain point by a theory in
the fine canonical sequence. It turns out that for any specifiable point in the
sequence one can find an Orey sentence that is “flexible” below that point
and settled at that point. This follows from the following lemma:

Theorem 4.1. Suppose 〈ψi : i < ω〉 is a recursive sequence of Π0
1-statements

that are of increasing strength; that is, such that for all i < j, PA ` ψj →
Con(ψi). There is a Π0

2-statement ϕ such that for all i < ω,

PA ` “ϕ is an Orey sentence for PA + ψi.”

Proof. Notice that (working in PA) we may assume Con(PA + ψi) since if
this fails then every sentence is trivially an Orey sentence with respect to
PA + ψi.

We begin by noting that there is a uniform way for constructing an Orey
sentence OT for a recursive extension T of PA: Given T , let OT be such that

PA ` OT ↔ ∀n
(
Con(T �n+OT )→ Con(T�n+ ¬OT )

)
.

This example is due to Lindström. [Notice that OT is the Gödel sentence for
the Feferman provability predicate in T .] Using the fact that T1 6 T2 if and
only if for all n, T2 ` Con(T1�n) it is straightforward to see that OT is an
Orey sentence for T .

15The observations in this and the next section are joint with Hugh Woodin.
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Notice that PA + Con(T ) also proves OT : In PA + Con(T ) we can
prove that OT is independent of T . Thus, in PA + Con(T ) we can prove
∀nCon(T �n+ ¬Orey(T )), which implies OT .

The statement OT is ∆0
2 (provably in PA). It is seen to be Π0

2 by inspec-
tion. To show that (in PA) it can also be written as Σ0

2 one uses the fact
that

PA ` ∀n
(
Con(T1�n)→ Con(T2�n)

)
↔ Con(T2) ∨ ∃n

(
¬Con(T1�n) ∧ ∀m < nCon(T2�m)

)
.

(See Exercise 12 of Chapter 6 of Lindström 2003).
For a recursive extension T of PA let ‘Max(T )’ abbreviate

∀nCon(T �n) ∧ ¬Con(T ).

Let Tr be the Σ0
2 truth predicate for Σ0

2 statements and let Tr′ be the Π0
2

truth predicate for Π0
2 statements.

By the Diagonal Lemma, let ϕ be such that

Q ` ϕ↔ ∀i < ω
(
Tr(pMax(PA + ψi)q)→ Tr′(pOPA+ψi

q)
)
.

The statement ϕ is Π0
2.

Now fix i < ω. Work in PA and assume Con(PA + ψi). We claim that ϕ
is an Orey sentence for PA + ψi.

For convenience we shall actually give a model-theoretic proof. It is
straightforward (using the Hilbert-Bernays arithmetization of the complete-
ness theorem (as we have above)) to transform this model-theoretic proof
into a formal proof in PA.

To show that ϕ is an Orey sentence for PA + ψi it suffices to show that
(i) any model of PA +ψi can be end extended to a model of PA +ψi +ϕ and
(ii) any model of PA + ψi can be end extended to a model of PA + ψi + ¬ϕ.
Let M be a model of PA + ψi. Let M ′ be an end-extension of M such that

M ′ |= PA + ψi + Max(PA + ψi).

Since the antecedents of ϕ are mutually exclusive,

M ′ |= ∀j (j 6= i→ ¬(Max(PA + ψj)).

Thus, the truth of ϕ in M ′ or any of its end extensions hinges on whether
Orey(PA + ψi) holds. But since this is an Orey sentence, we can toggle its
truth-value by shifting to end extensions of M ′. We can thereby toggle the
truth-value of ϕ.
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Analogue of CH

Theorem 4.2. For each i < ω, there is a Π0
i+2-sentence ϕ such that for all

Π0
i -sentences ψ

PA ` Con(PA + ψ)→
(
Con(PA + ψ + ϕ) ∧ Con(PA + ψ + ¬ϕ)

)
.

Proof. For each i < ω, let ‘Prfi(x, pϕq)’ abbreviate

∃ψ ∈ Π0
i

(
Tri(pψq) ∧ PrfPA+ψ(x, pϕq)

)
,

where ‘Tri’ is the Π0
i truth predicate, and let ‘PrfRi (x, pϕq)’ abbreviate

Prfi(x, pϕq) ∧ ∀x̄ 6 x (¬Prfi(x, p¬ϕq)).

Thus, ∃xPrfi(x, pϕq) asserts that ϕ is provable from some Π0
i -truth adjoined

to PA and ∃xPrfi(x, pϕq) is the associated “Rosser variant” of this statement.
Fix i < ω. By the Diagonal Lemma, let ϕ be such that

Q ` ϕ↔ ¬∃xPrfRi (x, pϕq).

Let ψ0 be Π0
i . Work in PA and assume Con(PA + ψ0). We claim that ϕ is

independent of PA + ψ0.
For convenience we shall actually give a model-theoretic proof. It is

straightforward (using the Hilbert-Bernays arithmetization of the complete-
ness theorem (as we have above)) to transform this model-theoretic proof
into a formal proof in PA.

Step 1. Assume for contradiction that PA + ψ0 ` ϕ. Fix n < ω such
that

Q ` PrfPA+ψ0(n, pϕq).

Let M |= PA + ψ0. So M |= ϕ and M |= PrfPA+ψ0(n, pϕq).

Claim 1. M |= ∀n̄ 6 n (¬Prfi(n̄, p¬ϕq)).

Proof. Assume for contradiction that this fails; so

M |= ∃n̄ 6 n∃ψ ∈ Π0
i (Tri(pψq) ∧ PrfPA+ψ(n̄, p¬ϕq)).

Fix such an n̄ 6 n. Since n is standard, n̄ is standard. Thus, M is correct
in thinking

PrfPA+ψ(n̄, p¬ϕq).
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Since
M |= PA + ψ

(as ϕ comes from the Π0
i oracle) it follows that

M |= ¬ϕ,
which is a contradiction.

We now claim that M |= ¬ϕ, that is,

M |= ∃xPrfi(x, pϕq) ∧ ∀x̄ 6 x (¬Prfi(x̄, p¬ϕq)),
as witnessed by x = n and ψ = ψ0. We have that M |= ψ0∧PrfPA+ψ0(n, pϕq);
soM |= Prfi(n, pϕq). And by the claim we have thatM |= ∀n̄ 6 n (¬Prfi(n̄, p¬ϕq)).
Thus, M |= ¬ϕ, which is a contradiction.

Step 2. Assume for contradiction that PA + ψ0 ` ¬ϕ. Fix n < ω such
that

Q ` PrfPA+ψ0(n, p¬ϕq).
Let M |= PA + ψ0. So M |= ¬ϕ and M |= PrfPA+ψ0(n, p¬ϕq). In M fix
witnesses x and ψ for the existential quantifiers in ¬ϕ.

Claim 2. x < n.

Proof. We have that

M |= ψ0 ∈ Π0
i ∧ ψ0 ∧ PrfPA+ψ0(n, p¬ϕq).

But
M |= ∀x̄ 6 x¬∃ψ ∈ Π0

i (Tri(pψq) ∧ PrfPA+ψ(x̄, p¬ϕq).
So ψ0 witnesses that x < n.

Thus, x is standard. To emphasize this let us write x = n̄. We have

M |= ψ ∧ PrfPA+ψ(n̄, pϕq).

Since n̄ is standard, M is correct in thinking

PrfPA+ψ(n̄, pϕq).

Since
M |= PA + ψ

it follows that
M |= ϕ,

which is a contradiction.
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